• Title/Summary/Keyword: Chlorine effect

Search Result 369, Processing Time 0.04 seconds

Interaction of Oxygen and Chlorine Dioxide in Pulp Bleaching (I) -Studies on the Degradation of Lignin Model Compounds- (펄프 표백시 산소와 이산화염소의 상호작용 (제1보) - 리그닌 모델화합물 연구 -)

  • 윤병호;황병호;김세종;최경화
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.35 no.3
    • /
    • pp.74-78
    • /
    • 2003
  • The structural property of phenolic and non-phenolic lignin has an effect on the reaction rate of lignin by oxygen and chlorine dioxide respectively. Moreover, the undesirable degradation of cellulose followed by lignin degradation is influenced by chemical charge and reaction time. In this paper, several lignin model compounds were used to illuminate the interaction of oxygen and chlorine dioxide by varying the position of O and D(OD, DO, ODO and DOD), and gas chromatography method was used to investigate the degradation of lignin by determining the content of methoxyl groups in lignin. It was shown that structural properties of lignin models were more influential on the degradation and demethylation of lignin than the above combination. Combination of oxygen and chlorine dioxide, however, was more effective in degradation of lignin than only one stage, and three stages than two stages.

Effect of the bath composition on the surface appearance and the hardness of zinc deposits from the chloride bath (염화물욕에서 아연도금층의 표면외관과 경도에 미치는 욕조성의 영향)

  • 김영근;김명수
    • Journal of Surface Science and Engineering
    • /
    • v.33 no.5
    • /
    • pp.339-348
    • /
    • 2000
  • The study was conducted on the effect of bath composition on the surface appearance, the hardness and the crystal orientation of zinc electrodeposits from the chloride bath. (1) The hardness of the zinc electrodeposits from the chloride bath was increased by suppressing mass transfer of zinc through adding the organic additives and the chlorine ion in the electrolyte. (2) The surface whiteness of zinc deposits was decreased due to the change of the preferred orientation from (002) , (103) to (101) , (100) through increasing the organic additives and chlorine ion in the electrolyte. (3) The addition of Cu, Sn, Ni or Co in the chloride bath elevated the hardness of the zinc deposits but darkened the surface whiteness. (4) The optimum condition of the organic additives and the chlorine ion for increasing the hardness of zinc deposits and preventing dark surface ranges 0.3 m1/1 to 0.4 m1/1 and 6.5 mol/1 to 6.8mol/l respectively.

  • PDF

Preparation and Flame Retardancy Effect of Polyurethane Coatings Containing Phosphorus and Chlorine (인과 염소를 함유하는 폴리우레탄 도료의 제조와 난연효과)

  • Shim Il-Woo;Jo Hye-Jin;Park Hong-Soo;Kim Seong-Kil;Kim Young-Geun
    • Polymer(Korea)
    • /
    • v.30 no.3
    • /
    • pp.238-246
    • /
    • 2006
  • The aim of this study is to enhance the flame retardancy by the synergism effect of chlorine and phosphorus groups. The flame-retardant polyurethane coatings containing chlorine and phosphorus compounds were synthesized. After synthesizing the intermediate products of tetramethylene bis (orthophosphate) (TMBO) and neohexanediol trichlorobenzoate (TBA-adduct), the condensation polymerization was performed with four different monomers of two intermediates, 1,4-butanediol, and adipic acid to obtain four-component copolymer(TTBA). The two-component flame-retardant polyurethane coatings (TTBA-10C/HDI-trimer=TTHD-10C, TTBA-20C/HDI-trimer=TTHD-20C, TTBA-30C/HDI trimer=TTHD-30C) were obtained by curing reaction at room temperature with the synthesized TTBAs and hexamethylene diisocyanate (HDI)-trimer as a curing agent. The obtained TTHDs were made into coating samples and used as test samples for various physical properties. The physical properties of the flame-retardant coatings containing chlorine and phosphorus groups were generally inferior to those containing only phosphorus group. Flame retardancy was tested by vortical and horizontal combustion method, and $45^{\circ}$ Meckel burner method. Since the retardancy of flame-retardant coatings containing chlorine and phosphorus groups was better than that containing only phosphorus group, it could be concluded that the retardancy by the synergism effect of chlorine and phosphorus groups exhibited.

Effect of Experimental Factors on Manganese Removal in Manganese Sand Filtration (망간모래여과공정에서 망간제거에 미치는 영향인자)

  • Kim, Berm-Soo;Yoon, Jaekyung;Ann, Hyo-Won;Kim, Chung-Hwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.1
    • /
    • pp.86-93
    • /
    • 2006
  • In the drinking water treatment, the aesthetic and color problem are caused by the manganese which is occurring and present in the surface, lake and ground water. The most common treatment processes for removing manganese are known for oxidation followed by filtration. In this study, the manganese sand process was used for removing manganese with river bank filtrate as a source. In the manganese sand process, the residual chlorine and pH are important factors on the continuous manganese oxidation. In addition, space velocity (SV) and alum dosage are play a role of manganese removal. Even though manganese removal increased with increasing chlorine concentration, the control of residual chlorine is actually difficult in this process As the results of tests, the residual chlorine concentration as well as manganese removal were effectively achieved at pH 7.5. The optimum attached manganese concentration on manganese sand was confirmed to 0.3mg/L by the experimental result of a typical sand converting to manganese sand.

Serichlor, A New Disinfectant in Indian Sericulture

  • Balavenkatasubbaiah M.;Nataraju B.;Sharma S.D.;Selvakumar T.;Chandrasekharan K.;Rao P. Sudhakara
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.12 no.1
    • /
    • pp.7-14
    • /
    • 2006
  • Silkworm diseases are better prevented than cured. Disinfection and hygiene are the two important aspects in silkworm rearing to prevent the diseases. Suitable disinfectant is the primary need to disinfect the rearing house, its surroundings and appliances to eliminate the persistent pathogens from the rearing environment. In this direction, Serichlor, a new disinfectant in Indian Sericulture marketed as Serichlor-60 (contains 60,000 ppm of chlorine dioxide) and Serichlor-20 (contains 20,000 ppm of chlorine dioxide) has been evaluated for its germicidal effect against the pathogens of silkworm, viz., spores of Nosema bombycis, Bacillus thuringiensis, polyhedra of BmNPV and conidia of Beauveria bassiana both in vitro and in vivo. Results indicated that high concentration (2,500 ppm of chlorine dioxide) is required to kill all the pathogens at 100% level. The efficacy of the Serichlor was greatly enhanced by the addition of 0.5% slaked lime solution. 500 ppm of chlorine dioxide in 0.5% slaked lime solution was found effective against all the pathogens tested. This concentration of disinfectant was also found effective for disinfection of rearing house, rearing appliances and silkworm egg surface. The disinfectant is stable, non hazardous, least corrosive and most suitable for Indian Sericulture.

Inhibitory Effect of Chlorine Dioxide on Phenoloxidase Activation of the Indianmeal Moth, Plodia interpunctella (화랑곡나방(Plodia interpunctella)의 페놀옥시데이즈 활성화에 대한 이산화염소의 억제 효과)

  • Kim, Minhyun;Kwon, Hyeok;Kim, Wook;Kim, Yonggyun
    • The Korean Journal of Pesticide Science
    • /
    • v.20 no.2
    • /
    • pp.138-144
    • /
    • 2016
  • Phenoloxidase (PO) is an oxidizing enzyme and plays crucial roles in insect immunity and cuticle sclerotization. High oxidizing activity of chlorine dioxide gives effective control activities against microbes and insect pests. These allowed us to assess any inhibitory activity of chlorine dioxide against PO with respect to insect immunity. PO activities of the Indeanmeal moth, Plodia interpunctella, was detected in both hemocytes and plasma. Upon bacterial challenge, PO activity was significantly increased especially in plasma. However, the immune challenge coupled with chlorine dioxide treatment did not enhance PO activity. When different chlorine dioxide concentrations were incubated with activated PO by immune challenge, they did not inhibit the activated PO. These results indicate that chlorine dioxide suppresses PO activity by inhibiting PO activation.

Effect of Sugarcane Bagasse Soda-AQ Pulp Bleaching Properties by Type of Chelate Compounds and Simultaneous Process of (DQ) Stage (이산화염소 표백단계와 킬레이트 처리단계 동시 진행 시 킬레이트 종류가 사탕수수 Soda-AQ 펄프 표백에 미치는 영향)

  • Lee, Jai-Sung;Shin, Soo-Jeong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.1
    • /
    • pp.147-155
    • /
    • 2016
  • Pulp made from sugarcane bagasse (SCB) was bleached in element chlorine free (ECF) sequence. The peroxide bleaching process for the final bleaching process has been introduced in order to reduce the use of chlorine dioxide. Prior to peroxide bleaching, different chelating chemicals were applied. When 4.5% of the total chlorine dioxide was used, bleached SCB pulp using additional DTPA chelate stage (DEDQP) resulted in 87.0% of the ISO brightness. However, bleached pulp using simultaneous stage of DTPA chelate and chlorine dioxide (DE(DQ)P) was reached at 83.9% of the ISO brightness. The viscosity of DEDQP bleached pulp was 25.6 cPs, and the one of DE(DQ)P bleached pulp was 21.9 cPs. Decreasing of chelate effect by chlorine dioxide led to a decrease in the final brightness and a lower viscosity. But simultaneous stage of EDTA chelate and chlorine dioxide (DE(DQ)P) led to higher final brightness (87.0% ISO) and higher viscosity (25.8 cPs) than those of the $DEDQ_{EDTA}P$ bleached pulp (86.4% ISO, 25.2 cPs).

Preparation and Physical Properties of PU Flame-Retardant Coatings Using Modified Polyester Containing Phosphorus/Chlorine and APT-Trimer (인과 염소 함유 변성폴리에스테르와 APT-Trimer에 의한 PU 난연도료의 제조 및 도막물성)

  • Park, Hong-Soo;Jo, Hye-Jin;Shim, Il-Woo;Hahm, Hyun-Sik;Kim, Seung-Jin;Sung, Ki-Chun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.270-280
    • /
    • 2005
  • To maximize a synergy effect in flame-retardancy of flame-retardant coatings, phosphorus and chlorine were introduced in polymer chains. Two-components PU flame-retardant modified polyesters (ABTTC-10C, -20C, -30C) were prepared by curing, at room temperature, of isocyanate (allophanate-trimer) and prepared modified polyesters which contain phosphorus and chlorine. To examine the film properties of the prepared flame-retardant coatings, film specimens were prepared with the prepared coatings. The film properties of ABTTC, ABTTC-10C and ABTTC-20C, which contain 0, 10 and 20wt%, 2,4-dichlorobenzoic acid (2,4-DCBA), respectively, were proved to be good, whereas the film properties of ABTTC-30C, which contains 30wt% 2,4-DCBA, were proved to be a little bit poor. Two kinds of flame retardancy tests, $45^{\circ}$Meckel burner method and LOI method, were performed. With the $45^{\circ}$Meckel burner method, three flame-retardant coatings except ABTTC showed less than 3.4 cm of char length, and showed less than 2 seconds of afterflaming and afterglow. From this result, the prepared flame-retardant coatings were proved to have the 1st grade flame retardancy. With the LOI method, the LOI values of the coatings containing more than 10wt% 2,4-DCBA were higher than 30wt%, which means that the coatings possess good flame-retardancy. From these results, it was found that synergistic effect in flame-retardancy was taken place by the introduced phosphorus and chlorine.

Microbiological Characterization and Chlorine Treatment of Buckwheat Sprouts (메밀 새싹채소의 주요 내재미생물 분석 및 염소처리에 따른 품질변화)

  • Lee, Hyun-Hee;Hong, Seok-In;Kim, Dong-Man
    • Korean Journal of Food Science and Technology
    • /
    • v.41 no.4
    • /
    • pp.452-457
    • /
    • 2009
  • In order to secure microbiological safety and quality of commercial vegetable sprouts, buckwheat seeds and sprouts were investigated for their microbiological flora and for the effect of chlorine treatment on quality. Microbiological analyses showed that major inherent bacteria including Enterobacter, Sphingomonas, and Klebsiella were found in commercial buckwheat sprouts with a population size ranging from $10^5$ to $10^7$ CFU/g. In addition, buckwheat seeds had a similar microbial flora to sprouts. Foodborne pathogenic bacteria such as Escherichia coli O157:H7, Staphylococcus aureus, Salmonella Typhimurium, and Listeria monocytogenes were not detected in the sprout or in the seed samples. Chlorine treatment with 50-150 ppm sodium hypochlorite noticeably reduced viable bacteria cell counts of the sprouts by about 1 log. However, no significant difference was observed among the different chlorine concentrations. After storage for 7 days at $5^{\circ}C$, the sprouts treated with 100-150 ppm chlorine showed higher sensory scores in visual quality than the others (p<0.05). The results indicated that proper pretreatment, such as dipping in chlorinated water, could confer a beneficial effect on the microbiological safety and visual quality of buckwheat sprouts.

The Effect of Seawater on Hydration of Clinker Minerals (I) Effects of SO42- and Cl- ions (시멘트 클린커 광물의 수화에 미치는 해수성분의 영향 (I)SO42- 및 Cl-이온에 의한 영향)

  • 신도철;송태웅;한기성;최상흘
    • Journal of the Korean Ceramic Society
    • /
    • v.24 no.1
    • /
    • pp.77-85
    • /
    • 1987
  • Hardened cement paste is mainly affected by corrosion of sulphate and chlorine ions in sea water. In this investigation, many specimens were made with the cement clinker minerals such as C3S, C3A, C4AF and their mixture according to cement composition added various blending materials. After the specimens were immersed in 4% MgSO4 and MgCl2 solutions, the product of reaction, the microstructure of specimen and Ca+2 ion leached in the solution were studied. The formation of Ca(OH)2 in the specimen of C3S is reduced relatively by adding pozzolanic admixtures. The chlorine ion is easily diffuse into the C3S specimen and produced CaCl2 compound, and it makes the specimen porous by leaching out itself into the solution. The specimen of C3A, C4AF are broken down by expanding reaction of ettringite and gypsum compound produced in the MgSO4 solution. At a later period, the ettringite is transformed into gypsum and 5MgO.2Al2O3·15H2O. The C3A in the MgCl2 solution combines chlorine ion to form Friedel's salt and prevents the diffusion reaction of chlorine ion into the specimen. Granulated slag shows inferior effect on the resistance of the specimen in MgSO4 solution by forming ettringite and gypsum, but good result in MgCl2 solution. Pozzolanic materials, on the whole, offer noticable effect on the resistance of the specimen in both solutions.

  • PDF