• Title/Summary/Keyword: Chloride ponding test

Search Result 10, Processing Time 0.025 seconds

Experimental Investigation of Chloride Ion Penetration and Reinforcement Corrosion in Reinforced Concrete Member

  • Al Mamun, Md. Abdullah;Islam, Md. Shafiqul
    • Journal of Construction Engineering and Project Management
    • /
    • v.7 no.1
    • /
    • pp.26-29
    • /
    • 2017
  • This paper represents the experimental investigation of chloride penetration into plain concretes and reinforced concretes. The main objective of this work is to study the main influencing parameters affecting corrosion of steel in concrete. Plain cement concrete and reinforced cement concrete with different water-cement ratios and different cover depth were subjected to ponding test. Ponding of specimens were done for different periods into 10% NaCl solution. Depth of penetration of chloride solution into specimens was measured after ponding. Specimens were crushed and reinforcements were washed using $HNO_3$ solution and weight loss due to corrosion was calculated accordingly. There was a linear relationship between depth of penetration and water-cement ratio. It was also observed that, corrosion of reinforcing steel increases with chloride ponding period and with water-cement ratio. Corrosion of steel in concrete can be minimized by providing good quality concrete and sufficient concrete cover over the reinforcing bars. Water-cement ratio has to be low enough to slow down the penetration of chloride salts into concrete.

Service Life Prediction of R.C. Structures Considering Chloride Binding (염화물 고정화를 고려한 철근 콘크리트 구조물의 내구수명 예측)

  • Lee, Chang-Soo;Park, Jong-Hyok;Kim, Young-Ook
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.1
    • /
    • pp.15-22
    • /
    • 2010
  • Chloride-induced corrosion of steel bars in concrete exposed to marine environments has become one of the major causes of deterioration in many important facilities made of reinforced concrete. A study on chloride penetration in concrete has developed through long period exposure test along seawater, assesment of chloride ion diffusion by electrochemical techniques and so on. However, reasonable and exclusive chloride penetration model considering concrete material properties with mixture, degree of hydration, binding capacity has not been established. Therefore, in this paper, chloride penetration analysis of non-steady state is accomplished with material properties of concrete. Comparing with the results of analysis and chloride ponding test, we could accept the effect of binding capacity on chloride penetration in concrete and these results could be applied to a service life prediction of R.C. structures submerged in seawater. Therefore, there are 20~40% differences of service life to SHRP prediction.

Corrosion Evaluation of Epoxy-coated Bars in Chloride Contaminated Concrete Using Linear Polarization Tests (염화물 환경에 있는 에폭시도막철근의 부식 평가 연구)

  • Park, Young-Su;Choi, Kyong-Min;Jung, Si-Young;Kim, Byoung-Kook;Choi, Oan-Chul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.254-257
    • /
    • 2006
  • Five bench scale specimens were used to evaluate corrosion performance of damaged epoxy-coated bars in chloride contaminated concrete. The test specimens were subjected 48 weekly cycles of ponding with sodium chloride solution and drying. Test results using linear polarization technique show that the current density of specimen with conventional steel becomes $0.715\;{\mu}A/cm^2$ indicating that the steel bars are in moderate or high corrosion condition. However, the corrosion rates of the specimens with damaged epoxy coated bars are much below $0.1\;{\mu}A/cm^2$ and the bars appears to be in passive condition. The corrosion protection performance provided by calcium nitrite is better than that of specimens with the other two inhibitors.

  • PDF

An Experimental Study on Durability Evaluation of Nano Composite Hybrid Polymer Type Coatings Applied Concrete (알콕시 실란계 나노합성 Hybrid 폴리머형 코팅제를 적용한 콘크리트의 내구성능 평가에 관한 실험적 연구)

  • 박홍욱;송하원;백종명;우종태;남진원
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.687-692
    • /
    • 2003
  • In this study, durability of concrete whose surface were treated by nano-composite hybrid polymer type coatings, which can provide a barrier against the ingress of moisture or aggressive ions to concrete, is discussed. For the durability evaluation of the coated concrete, chloride ponding test, accelerating carbonation test, porosity measurement test, and the SEM test are conducted. As the result of this study, it is found that nano-composite hybrid polymer type coated concrete has a much higher resistance to the ingress of chloride ion, carbon dioxide, moisture and aggressive acid than plain concrete has.

  • PDF

An experimental study on durability evaluation of the concrete applied nano level inorganic polymer based coatings (나노합성 무기질 폴리머계 표면처리제를 적용한 콘크리트의 내구성능 평가에 관한 실험적 연구)

  • Baek Jong-Myeong;Kim Eun-Kyeum
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.1014-1020
    • /
    • 2004
  • In this study, durability of the nano-level inorganic polymer based coatings which can provide a barrier against the ingress of moisture or aggressive ions to concrete is discussed. For the durability evaluation of the coatings, chloride penetration test, accelerating carbonation test, freezing and thawing test, and sulfate ponding test are conducted. As the result of this study, concrete applied nano-level inorganic polymer based coatings has a much higher resistance to the ingress of chloride ion, carbon dioxide, moisture and aggressive acid than plain concrete and epoxy resin based paint by means of crosslinking three-dimensional structure with concrete structure.

  • PDF

Corrosion Evaluation of Epoxy-Coated Bars by Electrochemical Impedance Spectroscopy

  • Choi, Oan-Chul;Park, Young-Su;Ryu, Hyung-Yun
    • International Journal of Concrete Structures and Materials
    • /
    • v.2 no.2
    • /
    • pp.99-105
    • /
    • 2008
  • Southern exposure test specimens were used to evaluate corrosion performance of epoxy-coated reinforcing bars in chloride contaminated concrete by electrochemical impedance spectroscopy method. The test specimens with conventional bars, epoxy-coated bars and corrosion inhibitors were subjected 48 weekly cycles of ponding with sodium chloride solution and drying. The polarization resistance obtained from the Nyquist plot was the key parameter to characterize the degree of reinforcement corrosion. The impedance spectra of specimens with epoxy-coated bars are mainly governed by the arc of the interfacial film and the resistance against the charge transfer through the coating is an order of magnitude higher than that of the reference steel bars. Test results show good performance of epoxy-coated bars, although the coatings had holes simulating partial damage, and the effectiveness of corrosion-inhibiting additives. The corrosion rate obtained from the impedance spectroscopy method is equivalent to those determined by the linear polarization method for estimating the rate of corrosion of reinforcing steel in concrete structures.

Evaluation of Testing Method for Quality Control of Chloride Diffusivity in Concrete under chloride attack environment (콘크리트 구조물의 염해 내구성능 검토를 위한 현장 품질관리 시험법 검토)

  • Kim, Hong-Sam;Cheong, Hai-Moon;Ahn, Tae-Song;Kim, Cheol-Ho;Geon, Byung-Sub
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.973-976
    • /
    • 2008
  • Recently, it is increasingly reported that the deterioration of concrete structure under marine environments is due to diffusion and penetration of chloride ions. It is very important to estimate the diffusion coefficient of chloride ion in concrete. Estimation methods of chloride diffusivity by concentration difference is time-consuming. Therefore, chloride diffusivity of concrete is mainly conducted by electrically accelerated method, which is accelerating the movement of chloride ion by potential difference. However, there has not been any proper method for field quality control to closely determine the diffusion coefficient of chloride ion through accelerated tests using potential difference. In this paper, the various test methods for determination of chloride diffusion coefficient in concrete were investigated through comparison accelerated tests. From the results of estimated diffusion coefficient of chloride ion, relationship between the ponding test and acceleration test was examined.

  • PDF

Corrosion Evaluation of Epoxy-Coated Bars in Chloride Contaminated Concrete Using Linear Polarization Tests

  • Choi, Oan-Chul;Jung, Si-Young;Park, Young-Soo
    • International Journal of Concrete Structures and Materials
    • /
    • v.18 no.1E
    • /
    • pp.3-9
    • /
    • 2006
  • Five slab specimens with predefined cracks are examined to evaluate the corrosion behavior of epoxy-coated bars in chloride contaminated concrete, using linear polarization method. The test specimens were subjected to alternating weekly cycles of ponding in a salt solution and drying for 48 weeks. Test results show that the current density of the specimen of normal steel bars becomes 0.715 ${\mu}A/cm^2$ indicating that the steel bars are in moderate or high corrosion condition. However, the corrosion rates of the specimens with damaged epoxy-coated bars are significantly below 0.1 ${\mu}A/cm^2$ and the bars appears to be in passive condition. The damaged epoxy-coated bars with a corrosion inhibitor of calcium nitrite showed a corrosion rate of 0.110 ${\mu}m/year$ or 56 percents of the corrosion rate of damaged epoxy-coated specimen without such an inhibitor, 0.195 ${\mu}m/year$. However, the corrosion rates of specimens containing the other two corrosion inhibitors, a combination of amines and esters or mixtures of organic alkenyl dicarboxyl acid salts are quite equivalent to the control specimen. The research technique of linear polarization resistance method has proven itself to be useful in measuring corrosion rates of reinforcement in concrete.

Resistance In Chloride ion Penetration and Pore Structure of Concrete Containing Pozzolanic Admixtures (포졸란재 함유 콘크리트의 세공구조와 염화물이온 침투 저항성)

  • 소양섭;소형석
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.1
    • /
    • pp.100-109
    • /
    • 2002
  • Significant damage to concrete results from the intrusion of corrosive solutions, for example, dissolved chlorides corrode reinforcing steel and cause spatting. Effectively blocks the penetration of these solutions will eliminate or greatly reduce this damage and lead to increased durability. This study is to investigate the effects of pozzolanic admixtures, fly ash and silica fume, and a blast furnace slag on the chloride ion penetration of concretes. The main experimental variables wore the water-cementitious material ratios, the types and amount of admixtures, and the curing time. And it is tested for the porosity and pore size distributions of cement paste, chloride ion permeability based on electrical conductance, and 180-day ponding test for chloride intrusion. The results show that the resistance of concrete to the penetration of chloride ions increases as the w/c was decreased, and the increasing of curing time. Also, concrete with pozzolans exhibited higher resistance to chloride ion penetration than the plain concrete. The significant reduction in chloride ion permeability(charge passed) of concrete with pozzolans due to formation of a discontinuous macro-pore system which inhibits flow. It is shown that there is a relationship between chloride ion permeability and depth of chloride ion penetration of concrete, based on the pore structure (porosity and pore size distributions) of cement paste.

Transport Coefficients and Effect of Corrosion Resistance for SFRC (강섬유 보강 콘크리트의 수송계수 및 부식저항효과)

  • Kim, Byoung-Il
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.6
    • /
    • pp.867-873
    • /
    • 2010
  • This study investigated the corrosion properties of reinforced concrete with the addition of steel fibers. The transport properties of steel fiber-reinforced concrete such as permeable void, absorption by capillary action, water permeability and chloride diffusion were first measured to evaluate the relationship with the corrosion of steel rebar. Test results showed a slight increase on the compressive strength with the addition of steel fibers as well as considerable improvement of penetration resistance to mass transport of harmful materials into concrete. The addition of steel fibers in reinforced concrete accelerated the initiation of steel corrosion contrary to the expected results based on the measured transport properties. The NaCl ponding surface showed the spalling failure due to the corrosion expansion of steel fibers and the cut-surface around the steel rebar showed the localized steel fiber's corrosion. The wet-dry cycling with high chloride ions as well as high temperature seems to induce the increase of salt crystallization on the pores continually and the increased pressure with the steel fiber's corrosion on the pores caused the spalling failure on the exposed surface. The microcracking on the surface therefore accelerated the movement of water, chloride ions and oxygen into the embedded steel rebar. The mechanism affecting corrosion of embedded steel reinforcement with steel fibers in this study are not yet fully understood and require further study comprising of accurate experimental design to isolate the effect of steel fiber's potential mechanism on the corrosion process.