• Title/Summary/Keyword: Chloride permeability

Search Result 231, Processing Time 0.024 seconds

Solid-salt pressure-retarded osmosis with exothermic dissolution energy for sustainable electricity production

  • Choi, Wook;Bae, Harim;Ingole, Pravin G.;Lee, Hyung Keun;Kwak, Sung Jo;Jeong, Nam Jo;Park, Soon-Chul;Kim, Jong Hak;Lee, Jonghwi;Park, Chul Ho
    • Membrane and Water Treatment
    • /
    • v.6 no.2
    • /
    • pp.113-126
    • /
    • 2015
  • Salinity gradient power (SGP) systems have strong potential to generate sustainable clean electricity for 24 hours. Here, we introduce a solid-salt pressure-retarded osmosis (PRO) system using crystal salt powders rather than seawater. Solid salts have advantages such as a small storage volume, controllable solubility, high Gibbs dissolution energy, and a single type of water intake, low pretreatment costs. The power densities with 3 M draw solutions were $11W/m^2$ with exothermic energy and $8.9W/m^2$ without at 35 bar using a HTI FO membrane (water permeability $A=0.375L\;m^{-2}h^{-1}bar^{-1}$). These empirical power densities are ~13% of the theoretical value.

Durability of self compacted concrete containing slag in hot climate

  • Yahiaoui, Walid;Kenai, Said;Menadi, Belkacem;Kadri, El-Hadj
    • Advances in concrete construction
    • /
    • v.5 no.3
    • /
    • pp.271-288
    • /
    • 2017
  • This paper aims to investigate the effects of replacing cement with ground granulated blast furnace slag (GGBFS) in self compacting concrete in the fresh and hardened state. The performance of SCC in moderate climate is well investigated but few studies are available on the effect of hot environment. In this paper, the effect of initial water-curing period and curing conditions on the performance of SCC is reported. Cement was substituted by GGBFS by weight at two different levels of substitution (15% and 25%). Concrete specimens were stored either in a standard environment (T=$20^{\circ}C$, RH=100%) or in the open air in North Africa during the summer period (T=35 to $40^{\circ}C$; R.H=50 to 60%) after an initial humid curing period of 0, 3, 7 or 28 days. Compressive strength at 28 and 90 days, capillary absorption, sorptivity, water permeability, porosity and chloride ion penetration were investigated. The results show that the viscosity and yield stress are decreased with increasing dosage of GGBFS. The importance of humid curing in hot climates in particular when GGBFS is used is also proved. The substitution of cement by GGBFS improves SCC durability at long term. The best performances were observed in concrete specimens with 25% GGBFS and for 28 days water curing.

Study of a hybrid process combining ozonation and ceramic membrane for drinking water treatment (I) : manganese removal (정수처리를 위한 전오존-세라믹 막여과 조합공정에 관한 연구(I) : 망간 제거 중심)

  • Jin, Kwang Ho;Lim, Jae Lim;Lee, Kyung Hyuk;Wang, Chang Gun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.6
    • /
    • pp.633-640
    • /
    • 2008
  • In this research, the $3.6m^3/day$ scale pilot plant consisting preozonation, coagulation, flocculation, and ceramic membrane processes was operated for long term period to evaluate the validity of ceramic membrane filtration process for treating lake water containing high concentration manganese. The higher concentration of dissolved manganese($Mn^{2+}$) was effectively oxidized to the bigger insoluble colloidal manganese ($MnO^2$) by 1~2 mg/L ozone. The colloidal manganese reacted with coagulant (poly aluminium chloride, PAC) and then formed the big floc. Ceramic membrane rejected effectively manganese floc during membrane filtration. Dissolved organic carbon(DOC) removal was dependent upon $Mn^{2+}$ concentration. While average $Mn^{2+}$ concentration was 0.43 and 0.85 mg/L in raw water, DOC removal rate in preozonation was 26.5 and 13.5%, respectively. The decrease rate of membrane permeability was faster without preozonation than with preozonation while membrane fouling decreased with NOM oxidation by ozone. In conclusion, raw water containing high concentration of manganese can be effectively treated in preozonation-coagulation-ceramic membrane filtration system.

Monitoring of Degradation Process of Commercial ME Tapes under High Humidity Environment by AC Impedance Techniques

  • Take, Seisho;Shimanuki, Akiko;Itoi, Yasuhiko;Okuyama, Masaru
    • Corrosion Science and Technology
    • /
    • v.3 no.5
    • /
    • pp.194-197
    • /
    • 2004
  • The corrosion resistance of several kind of ME (Metal Evaporated) tape has been investigated both in mild sulfuric acid solution and NaCl solution by electrochemical impedance spectroscopy. It was found that the degradation of ME tapes was accelerated with increasing the concentration of sulfuric acid. There was no significant change in corrosion resistance when the concentration of NaCl was under 3.5 wt%. However, the impedance value decreased when the concentration of NaCl was up to 10 wt%. The degradation of backside of ME tapes was also investigated by AC impedance measurements. The results showed that the impedance behavior of backside plastic film changed with the concentration of sulfuric acid even at the beginning of immersion, implying the changing of the permeability for the backside of ME tapes. It was also found that the corrosion resistance of DVC (Digital Video Cassette) ME tape was better that that of Hi-8mm ME tapes in sulfuric acid solutions. Also, the backside of DVC ME tape showed better water resistance than that of Hi8 ME tapes.

Influence of Iranian low-reactivity GGBFS on the properties of mortars and concretes by Taguchi method

  • Ramezanianpour, A.A.;Kazemian, A.;Radaei, E.;AzariJafari, H.;Moghaddam, M.A.
    • Computers and Concrete
    • /
    • v.13 no.4
    • /
    • pp.423-436
    • /
    • 2014
  • Ground Granulated Blast Furnace Slag (GGBFS) is widely used as an effective partial cement replacement material. GGBFS inclusion has already been proven to improve several performance characteristics of concrete. GGBFS provides enhanced durability, including high resistance to chloride penetration and protection against alkali silica reaction. In this paper results of an experimental research work on influence of low-reactivity GGBFS (which is largely available in Iran) on the properties of mortars and concretes are reported. In the first stage, influence of GGBFS replacement level and fineness on the compressive strength of mortars was investigated using Taguchi method. The analysis of mean (ANOM) statistical approach was also adopted to develop the optimal conditions. Next, based on the obtained results, concrete mixtures were designed and water penetration, capillary absorption, surface resistivity, and compressive strength tests were carried out on highstrength concrete specimens at different ages up to 90 days. The results indicated that 7-day compressive strength is adversely affected by GGBFS inclusion, while the negative effect is less evident at later ages. Also, it was inferred that use of low-reactivity GGBFS (at moderate levels such as 20% and 30%) can enhance the impermeability of high-strength concrete since 28 days age.

Properties of High Strength Concrete Using Fly Ash and Crushed Sand (플라이 애시와 부순모래를 사용한 고강도 콘크리트의 특성)

  • 이봉학;김동호;전인구
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.2
    • /
    • pp.107-116
    • /
    • 2002
  • The amount used of aggregates for concrete is increasing rapidly since the mid-1980s in Korea. The natural gravels from river are already displaced with crushed stone, and use of crushed sand as a substitute of natural river sands, also, is getting increased day by day. This paper is presented fur analysis on mechanical properties of high strength concrete using fly ash and crushed sand. The material functions in mixing design of concretes are various water-cement ratios(w/c) such as 0.25, 0.40, 0.55 and different replacement ratio of crushed sand to natural sands such as 0%, 20%, 40%, 60%. As a results, it has been shown that compressive strengths of concretes with W/C lower than 0.40 and 0.25 are higher than 400 kgf/$\textrm{cm}^2$ and 600 kgf/$\textrm{cm}^2$ respectively. It is also concluded that the results of rapid chloride permeability tests of concrete are evaluated to negligible. The conclusions of this study is that it is possible to use fly ash and crushed sand fur high strength concrete.

Performance of eco-friendly mortar mixes against aggressive environments

  • Saha, Suman;Rajasekaran, Chandrasekaran;Gupta, Prateek
    • Advances in concrete construction
    • /
    • v.10 no.3
    • /
    • pp.237-245
    • /
    • 2020
  • Past research efforts already established geopolymer as an environment-friendly alternative binder system for ordinary Portland cement (OPC) and recycled aggregate is also one of the promising alternative for natural aggregates. In this study, an effort was made to produce eco-friendly mortar mixes using geopolymer as binder and recycled fine aggregate (RFA) partially and study the resistance ability of these mortar mixes against the aggressive environments. To form the geopolymer binder, 70% fly ash, 30% ground granulated blast furnace slag (GGBS) and alkaline solution comprising of sodium silicate solution and 14M sodium hydroxide solution with a ratio of 1.5 were used. The ratio of alkaline liquid to binder (AL/B) was also considered as 0.4 and 0.6. In order to determine the resistance ability against aggressive environmental conditions, acid attack test, sulphate attack test and rapid chloride permeability test were conducted. Change in mass, change in compressive strength of the specimens after the immersion in acid/sulphate solution for a period of 28, 56, 90 and 120 days has been presented and discussed in this study. Results indicated that the incorporation of RFA leads to the reduction in compressive strength. Even though strength reduction was observed, eco-friendly mortar mixes containing geopolymer as binder and RFA as fine aggregate performed better when it was produced with AL/B ratio of 0.6.

Synthesis and characterization of polyamide thin-film nanocomposite membrane containing ZnO nanoparticles

  • AL-Hobaib, A.S.;El Ghoul, Jaber;El Mir, Lassaad
    • Membrane and Water Treatment
    • /
    • v.6 no.4
    • /
    • pp.309-321
    • /
    • 2015
  • We report in this study the synthesis of mixed matrix reverse osmosis membranes by interfacial polymerization (IP) of thin film nanocomposite (TFNC) on porous polysulfone supports (PS). This paper investigates the synthesis of ZnO nanoparticles (NPs) using the sol-gel processing technique and evaluates the performance of mixed matrix membranes reached by these aerogel NPs. Aqueous m-phenyl diamine (MPD) and organic trimesoyl chloride (TMC)-NPs mixture solutions were used in the IP process. The reaction of MPD and TMC at the interface of PS substrates resulted in the formation of the thin film composite (TFC). NPs of ZnO with a size of about 25 nm were used for the fabrication of the TFNC membranes. These membranes were characterized and evaluated in comparison with neat TFC ones. Their performances were evaluated based on the water permeability and salt rejection. Experimental results indicated that the NPs improved membrane performance under optimal concentration of NPs. By changing the content of the filler, better hydrophilicity was obtained; the contact angle was decreased from $74^{\circ}$ to $32^{\circ}$. Also, the permeate water flux was increased from 26 to 49 L/m2.h when the content of NPs is 0.1 (wt.%) with the maintaining of lower salt passage of 1%.

Crack-healing and durability performance of self-healing concrete with microbial admixture (미생물 혼입 자기치유 콘크리트의 균열 치유성능 및 내구성능)

  • Chu, Inyeop;Woo, Sang-Kyun;Lee, Byung-Jae;Lee, Yun;Lee, Hyo-Sub
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.7 no.2
    • /
    • pp.295-299
    • /
    • 2021
  • Recently, interest in maintenance has been increasing due to the enlargement and aging of infra structures. Therefore, a new paradigm is required to secure and improve the durability of structures differentiated from the past. Accordingly, research on smart concrete incorporating the concept of self-healing into concrete is being actively conducted. In this study, the crack healing performance and durability performance of self-healing concrete applied with a hydrogel containing biomineral-forming microorganisms were evaluated. As a result of evaluating the dispersion of the hydrogel in concrete, it was confirmed that the hydrogel was well distributed in concrete matrix with a dispersion coefficient of 0.35 to 0.46. The crack healing performance evaluation was verified by a water permeability test, and showed a recovery rate of 95% or more at the age of 28 days, confirming the applicability of self-healing concrete. The durability performance of self-healing concrete was evaluated in terms of resistance to penetration of chloride ion and freezing and thawing. Regardless of the mixing of the hydrogel, the same level of durability performance was shown for various compressive strength level. Therefore, it was confirmed that the microbial admixture did not affect concrete durability. In the future, long-term crack healing performance and durability verification studies should be supplemented.

Penetration of De-icing Salt in Bare Concrete Bridge Decks in Highways (고속도로 콘크리트 노출 바닥판에서의 제설 염화물의 침투 특성)

  • Suh, Jin Won;Ku, Bon Sung;Rhee, Ji Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.2
    • /
    • pp.85-92
    • /
    • 2007
  • In 1980s, a number of bridges with bare concrete deck were constructed on the Korea highway. After 20 years service, many bare concrete decks are still in good condition without special maintenance activity. Therefore, the application of the bare concrete deck is being reestimated from the view of construction and maintenance. As a part of the program, the characteristic of penetration(surface chloride and apparent diffusion coefficient) of de-icing salt into bare concrete bridge deck was analyzed in order to predict the service life of bridge on Korea highway.