• Title/Summary/Keyword: Chloride leaching

Search Result 68, Processing Time 0.022 seconds

Separation of Ni(II), Co(II), Mn(II), and Si(IV) from Synthetic Sulfate and Chloride Solutions by Ion Exchange (황산과 염산 합성용액에서 이온교환에 의한 니켈(II), 코발트(II), 망간(II) 및 실리케이트(IV)의 분리)

  • Nguyen, Thi Thu Huong;Wen, Jiangxian;Lee, Man Seung
    • Resources Recycling
    • /
    • v.31 no.3
    • /
    • pp.73-80
    • /
    • 2022
  • Reduction smelting of spent lithium-ion batteries at high temperature produces metallic alloys. Following solvent extraction of the leaching solutions of these metallic alloys with either sulfuric or hydrochloric acid, the raffinate is found to contain Ni(II), Co(II), Mn(II), and Si(IV). In this study, two cationic exchange resins (Diphonix and P204) were employed to investigate the loading behavior of these ions from synthetic sulfate and chloride solutions. Experimental results showed that Ni(II), Co(II), and Mn(II) could be selectively loaded onto the Diphonix resin from a sulfate solution of pH 3.0. With a chloride solution of pH 6.0, Mn(II) was selectively loaded onto the P204 resin, leaving Ni(II) and Si(IV) in the effluent. Elution experiments with H2SO4 and/or HCl resulted in the complete recovery of metal ions from the loaded resin.

Analytical Studies on Leaching of Plasticizers from Medical Grade Polyvinyl Chloride Containers (폴리염화비닐 의료용기의 가소제의 정량 및 용출에 관한 연구)

  • Lee, Min-Hwa
    • Journal of Pharmaceutical Investigation
    • /
    • v.16 no.3
    • /
    • pp.106-109
    • /
    • 1986
  • The elution of di(2-ethylhexyl) phthalate (DEHP) from flexible bags into human blood or transfusion was studied. The conditions of determination of DEHP using high performance liquid chromatography (HPLC) was established as follows: Condition I-column, ${\mu}-Bondapak^{TM}\;C_{18}$; mobile phase, methanol: water=91 : 9 ; flow rate, 1.2ml/min; wavelength, 254nm; injection volume, $10{\mu}l$. Condition II-column, Lichorsorb RP-18$(10{\mu}m)$; mobile phase, methanol: water=94 : 6 ; flow rate, 1.1ml/min; wavelength, 254nm; injection volume, $10{\mu}l$. DEHP was found to be migrating from PVC blood and total parentral nutrient bags into methanol, but not into anti, coagulant drug solution.

  • PDF

Recovery Process of Vanadium from the Leaching Solution of Salt-Roasted Vanadate Ore (바나듐광 염배소물 수침출 용액으로부터 바나듐 회수공정 고찰)

  • Yoon, Ho-Sung;Heo, Seo-Jin;Park, Yu-Jin;Kim, Chul-Joo;Chung, Kyeong Woo;Kim, Rina;Jeon, Ho-Seok
    • Resources Recycling
    • /
    • v.31 no.2
    • /
    • pp.40-48
    • /
    • 2022
  • In this study, the effects of solution components were investigated in the recovery of vanadium as ammonium metavanadate from vanadium-ore-salt roasting-water leaching solution. The vanadium-containing solution is strongly alkaline (pH 13), so the pH must be lowered to 9 or less to increase the ammonium metavanadate precipitation efficiency. However, in the process of adjusting the solution pH using sulfuric acid, aluminum ions are co-precipitated, which must be removed first. In this study, aluminum was precipitated in the form of an aluminum-silicate compound using sodium silicate, and the conditions for minimizing vanadium loss in this process were investigated. After aluminum removal, the silicate was precipitated and removed by adjusting the solution pH to 9 or less using sulfuric acid. In this process, the concentration and addition rate of sulfuric acid have a significant influence on the loss of vanadium, and vanadium loss was minimized as much as possible by slowly adding dilute sulfuric acid. Ammonium metavanadate was precipitated using three equivalents of ammonium chloride at room temperature from the aluminum-free, aqueous solution of vanadium following the pH adjustment process. The recovery yield of vanadium in the form of ammonium metavanadate exceeded 81%. After washing the product, vanadium pentoxide with 98.6% purity was obtained following heat treatment at 550 ℃ for 2 hours.

Solvent Extraction Separation of Nd and Pr from Chloride Solution using Organophosphorus Acid Extractants (염산용액에서 유기인산계 추출제에 의한 Nd와 Pr의 분리추출)

  • Park, Joo-Ho;Jeon, Ho-Seok;Lee, Man-Seung
    • Resources Recycling
    • /
    • v.23 no.2
    • /
    • pp.37-45
    • /
    • 2014
  • Solvent extraction experiments have been performed to separate Nd and Pr from chloride leaching solution of monazite sand using single Cyanex272 and mixed extractants as PC88A+Cyanex272 and PC88A+TBP. For this purpose, the effect of the concentration of extractants on the extraction and separation of the two metals were studied by varying the pH of aqueous solution. In the experimental ranges conducted in this study, the distribution coefficients of Nd were higher than those of Pr. In Cyanex272 system, our results indicated that concentration of extractant and initial pH did not affect distribution coefficients, but separation factor was increased with increasing initial pH. In binary extractant system, distribution coefficients were lower than those of single PC88A system, whereas separation factor was similar in both mixed and single extractant system.

Preparation of Pure Silver Powders by using Mechanochemical Process (기계화학공정(機械化學工程)에 의한 은(銀)염화물로부터 고순도 은(銀)분말 제조(製造))

  • Lee, Jaer-Yeong;Tung Le, M.;Ahn, Jong-Gwan;Kim, Jong-Oh;Chung, Hun S.;Kim, Byoung-Gyu
    • Resources Recycling
    • /
    • v.15 no.5 s.73
    • /
    • pp.33-37
    • /
    • 2006
  • An equal-molar mixture of silver chloride (AgCl) and copper (Cu) was ground in atmosphere conditions using a planetary ball mill to investigate mechanochemical (MC) reaction for preparation of silver powders. The reaction causes the mixture of AgCl and Cu to change the composition of the mixture, such as silver (Ag) and cuprous chloride (CuCl). Through the leaching with ammonium hydroxide solution (1 mol), CuCl can be separated from MC product, so that pure Ag powders can be obtained as the final product. Moreover, polyvinylpyrrolidone (PVP) was used as the additive not only to improve dispersion of Ag pow- der during MC process, but also to control surface oxidation of Ag powders, prepared as the final product.

Synthesis of nano Cerium(IV) oxide from recycled Ce precusor (재생 세륨 전구체로부터 나노산화세륨(IV)합성)

  • Kang, Tae-Hee;Koo, Sang-Man;Jung, Choong-Ho;Hwang, Kwang-Taek;Kang, Woo-Kyu
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.2
    • /
    • pp.101-107
    • /
    • 2013
  • Cerium compounds such as Cerium hydroxide ($Ce(OH)_3$), Cerium chloride ($CeCl_3{\cdot}nH_2O$), Cerium carbonate hydrate ($Ce_2(CO_3)_3{\cdot}8H_2O$), Cerium oxide ($CeO_2$) were synthesized using recycled Ce precursor. Cerium(IV) oxide of nanoparticles were obtained by Ultra-sonication. Cerium-sodium- sulfate compound was synthesized through acid-leaching and addition of sodium sulfate from 99 wt% purity of Ce precursor as a starting material that was recycled from the waste polishing slurry. Moreover Cerium hydroxide was obtained from Cerium-sodium-sulfate compound by adding to sodium hydroxide solution. Then Cerium chloride was synthesized by adding of hydrochloric acid to Cerium hydroxide. Needle-shaped Cerium carbonate hydrate was synthesized in the continuous process and Cerium(IV) oxide with 30~40 nm size was subsequently obtained by the calcinations and dispersion.

Dismantling of Components from Waste Printed Circuit Boards Using Stannic Chloride Solution (염화주석용액을 이용한 폐인쇄회로기판으로부터 부품의 분리)

  • Park, Yujin;Yoo, Kyoungkeun
    • Resources Recycling
    • /
    • v.30 no.2
    • /
    • pp.24-30
    • /
    • 2021
  • Dismantling tests were performed to separate components from waste printed circuit boards (PCBs) using HCl solution with Sn4+. Then, the effects of agitation speed, reaction temperature, initial Sn4+ concentration, and HCl concentration on the dismantling of components were investigated. No significant effect on the dismantling speed was observed upon changing the agitation speed from 100 to 300 rpm. However, the dismantling rate increased with increasing reaction temperature, Sn4+ concentration, and HCl concentration. In the all-component dismantling tests, when the dismantling ratio increased to 100%, no solder was observed on the boards, and the Sn4+ concentration was ~1,500 mg/L. The dismantling ratio of the components from the PCB increased to 100% within 2 h when 1 mol/L HCl solution with 10,000 mg/L Sn4+ was used at an agitation speed and temperature of 200 rpm and 90 ℃, respectively.

A Study on Chloride Threshold Level of Blended Cement Mortar Using Polarization Resistance Method (분극저항 측정기법을 이용한 혼합 시멘트 모르타르의 임계 염화물 농도에 대한 연구)

  • Song, Ha-Won;Lee, Chang-Hong;Lee, Kewn-Chu;Ann, Ki-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.3
    • /
    • pp.245-253
    • /
    • 2009
  • The importance of chloride ions in the corrosion of steel in concrete has led to the concept for chloride threshold level (CTL). The CTL can be defined as the content of chlorides at the steel depth that is necessary to sustain local passive film breakdown and hence initiate the corrosion process. Despite the importance of the CTL, due to the uncertainty determining the actual limits in various environments for chloride-induced corrosion, conservative values such as 0.4% by weight of cement or 1.2 kg in 1 $m^3$ concrete have been used in predicting the corrosion-free service life of reinforced concrete structures. The paper studies the CTL for blended cement concrete by comparing the resistance of cementitious binder to the onset of chloride-induced corrosion of steel. Mortar specimens were cast with centrally located steel rebar of 10 mm in diameter using cementitious mortars with ordinary Portland cement (OPC) and mixed mortars replaced with 30% pulverized fuel ash (PFA), 60% ground granulated blast furnace slag (GGBS) and 10% silica fume (SF), respectively, at 0.4 of a free W/B ratio. Chlorides were admixed in mixing water ranging 0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.5, 2.0, 2.5 and 3.0% by weight of binder(Based on $C1^-$). Specimens were curd 28 days at the room temperature, wrapped in polyethylene film to avoid leaching out of chloride and hydroxyl ions. Then the corrosion rate was measured using the polarization resistance method and the order of CTL for binder was determined. Thus, CTL of OPC, 60%GGBS, 30%PFA and 10%SF were determined by 1.6%, 0.45%, 0.8% and 2.15%, respectively.

Durability Enhancement in Nano-Silica Admixed Reinforced Mortar

  • Saraswathy, Velu;Karthick, Subbiah;Kwon, Seung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.4
    • /
    • pp.297-306
    • /
    • 2014
  • Recently nano-materials are gaining more importance in the construction industry due to its enhanced energy efficiency, durability, economy, and sustainability. Nano-silica addition to cement based materials can control the degradation of the fundamental calcium-silicate-hydrate reaction of concrete caused by calcium leaching in water as well as block water penetration and therefore lead to improvements in durability. In this paper, the influence of synthesized nano silica from locally available rice husk on the mechanical properties and corrosion resistant properties of OPC (Ordinary Portland Cement) has been studied by conducting various experimental investigations. Micro structural properties have been assessed by conducting Scanning Electron Microscopy, Thermo gravimetry and Differential Thermal Analysis, X-Ray Diffraction analysis, and FTIR studies. The experimental results revealed that NS reacted with calcium hydroxide crystals in the cement paste and produces Calcium Silicate Hydrate gel which enhanced the strength and acts as a filler which filled the nano pores present in concrete. Hence the strength and corrosion resistant properties were enhanced than the control.

Estimating Leaching of Nutrients and Pesticides in Agricultural Lands -A Perferential Flow Model- (농경지의 비료, 농약의 지하유실량 추정 -Preferential 흐름모형-)

  • 이남호;타모스틴후이스
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.39 no.2
    • /
    • pp.62-73
    • /
    • 1997
  • The application of nutrients and pesticides to agricultural lands has been reported to contribute to groundwater contamination, which can be explained by preferential flow in lieu of convective-dispersive flow. An one-dimensional numerical model depicting preferential water and solute movement was modified to describe multi-layer flows. The model is based on a piecewise linear conductivity function. By combining conservation of mass and Darcy's law and using the method of characteristics a solution is obtained for water flow in which water moves at distinct velocities in different flow regions instead of an average velocity for the whole profile. The model allows transfer ofqr solutes between pore groups. The transfer is characterized by assuming mixing coefficients. The model was applied to undisturbed soil columns and an experiment site with structured sandy clay loam soil. Chloride, bromide, and 2, 4-D were used as tracers. Simulated solutes concentrations were in good agreement with the soil column data and field data in which preferential flow of solute is significant. The proposed model is capable of describing preferential solute transport under laboratory and field conditions.

  • PDF