• Title/Summary/Keyword: Chloride bath

Search Result 108, Processing Time 0.021 seconds

The Research of Ni Electroless Plating for Ni/Cu Front Metal Solar Cells (Ni/Cu 금속전극 태양전지의 Ni electroless plating에 관한 연구)

  • Lee, Jae-Doo;Kim, Min-Jeong;Kim, Min-Jeong;Lee, Soo-Hong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.4
    • /
    • pp.328-332
    • /
    • 2011
  • The formation of front metal contact silicon solar cells is required for low cost, low contact resistance to silicon surface. One of the front metal contacts is Ni/Cu plating that it is available to simply and inexpensive production to apply mass production. Ni is shown to be a suitable barrier to Cu diffusion into the silicon. The process of Ni electroless plating on front silicon surface is performed using a chemical bath. Additives and buffer agents such as ammonium chloride is added to maintain the stability and pH control of the bath. Ni deposition rate is found to vary with temperature, time, utilization of bath. The experimental result shown that Ni layer by SEM (scanning electron microscopy) and EDX analysis. Finally, plated Ni/Cu contact solar cell result in an efficiency of 17.69% on $2{\times}2\;cm^2$, Cz wafer.

The Effects of Siegesbeckiae Herba on EDRF in the Carotid Artery of the Rabbit (희렴이 가토(家兎)의 혈관내피세포성(血管內皮細胞性) 이완인자(弛緩因子)에 미치는 영향(影響))

  • Kim, Ho-Hyun;Kim, Gil-Whon
    • The Journal of Korean Medicine
    • /
    • v.18 no.2
    • /
    • pp.15-32
    • /
    • 1997
  • This study was undertaken to define the mechanism of Siegesbeckiae Herba-induced relaxation in rabbit common carotid artery contracted by agonists. In order to investigate the effect of Siegesbeckiae Herba on contracted rabbit carotid arterial strips, transverse strips with intact or damaged endothelium were used for the experiment using organ bath. To analyze the mechanism of Siegesbeckiae Herba-induced relaxation, Siegesbeckiae Herba extract infused into contracted arterial strips induced by agonists after treatment of lanthanum chloride, indomethacin, atropine, $N\omega-nitro-{_L}-arginine$, cobalt chloride or methylene blue. The relaxation effect of Siegesbeckiae Herba was dependent on the presence of endothelium, showing that Siegesbeckiae Herba-induced relaxation was not observed in the strips without endothelium. The endothelium-dependent relaxation induced by Siegesbeckiae Herba was suppressed by the pretreatment of lanthanum chloride, $N\omega-nitro-{_L}-arginine$, cobalt chloride or methylene blue, but it was not observed in the strips pretreated with indomethacin or atropine. These results demonstrated that Siegesbeckiae Herba may inhibit agonist-induced contraction through an increase in the cyclic GMP by the production of nitric oxide in the vascular endothelial cells.

  • PDF

Effects of Ultrasonic Waves on Electrodeposition on Nickel-Zinc Alloys(I) (Ni-Zn 합금도금에 미치는 초음파의 영향(I))

  • Yang, Hack-Hui
    • Journal of the Korean institute of surface engineering
    • /
    • v.20 no.1
    • /
    • pp.4-14
    • /
    • 1987
  • The nickel-zinc alloy depositions have been studied in nickel chloride added chloride baths, to find out the effects of ultrasonic irradiation for the electrodeposition processes. The compositions of deposited alloys, the current efficiencies and the metallographic appearances in various conditions of Electrodeposition were investigated, in the range of ultrasonic irradiation of 50,500 and 1,000 Kc/s respectively. The results obtained are as follows; 1. Generally the nickel deposition process is more preferably activated than that of zinc by the ultrasonic irradiation. 2. The radios of nickel to zinc in the deposit are higher according to increase of nickel ion concentration and bath temperatures in irradiated baths. 3. The current efficiencies are also higher in the irradiated baths, so that the depolarization effect is noticeable. 4. The brightness and leveling effect of the deposits are appreciably better in the irradiated baths than in non-irradiated in 0.3M and 0.6M of nickel chloride and zinc chloride solutions and the current density of 3A/$dm^2$. 5. The mechanism of alloy deposition has been tentatively suggested in the case of ultrasonic irradiation.

  • PDF

Trials for the control of scuticociliatosis in the cultured olive flounder(paralkhthys olivaceus) by bath treatment

  • Jee, Bo-Young;Jo, Mi-Ra
    • Journal of fish pathology
    • /
    • v.15 no.2
    • /
    • pp.93-97
    • /
    • 2002
  • The scuticociliate, a histophagous ciliate, is known to cause high cumulative mortalities in juvenile olive flounder Paralichthys olivaceus rearing in land-based tank facilities. This study examined effects of bath treatment of 3 chemical agents including formalin, hydrogen peroxide and sodium chloride. and freshwater against scnricociliates infected olive flounder. Although 100 ppm formalin and freshwater did not completeIy eliminale ue scuticociliates within the internal organ of fish, chemicals were effective to prevent scuticociliatosis from spreading. It confirms the efficacy of the chemical with treating the diseased fish for at least 4 consecutive days.

Study on the Mechanical Properties and Microstructure of Nickel Sulfamate Electroform (니켈쌀파메이트 전주층의 물성과 미세구조)

  • 김인곤
    • Journal of the Korean institute of surface engineering
    • /
    • v.37 no.1
    • /
    • pp.40-48
    • /
    • 2004
  • Hardness and internal stress are very important in nickel electroforming. Nickel sulfamate bath has been widely used in electroforming because of its low internal stress and moderate hardness. Nickel sulfamate bath without chloride was chosen to investigated the effect of plating variable such as temperature, PH, current density and sodium naphthalene trisulfonate as addition agent on the hardness and internal stress. It was found that hardness increased with increasing temperature and decreasing current density and ranged from 150∼310 DPH. The hardness was highest at $55^{\circ}C$ and 10∼40 mA/$\textrm{cm}^2$. The internal stress increased with increasing current density and decreasing temperature. It was minimum at PH 3.0∼3.8. Low internal stress within $\pm$1,500 psi was obtained at both $50^{\circ}C$ and $55^{\circ}C$ in 10-20 mA/$\textrm{cm}^2$. The addition of sodium naphthalene trisulfonate was found to be effective in refine columnar grains thus resulted in decreasing internal stress, increasing hardness and improving brightness.

Effect of additives on surface properties of Zn-Ni alloy Coating (Zn-Ni 합금전기도금강판의 표면특성에 미치는 첨가제 영향)

  • 김현태;장삼규;정원섭
    • Journal of the Korean institute of surface engineering
    • /
    • v.31 no.4
    • /
    • pp.191-198
    • /
    • 1998
  • The effect of the additives on the Zn-Ni alloy electrocrystallization from a chloride bath was investigated by means of electrochemical methodes, scanning electron microscopy and measurement of surface appearancd, X-ray diffraction patterns. The additives thestd ware the Saccharin, surfactant of naptalene-derivative and mixed additive, The resistance of electrodeposit increased by adding the additives, whera the effect of additives on resistance was different with current density roughness, apperarance and morphology of deposit were also influenced by the type of additive. The deposir with fine, compact grains as well as good surface roughness and appearance was obtained from the mixed-additive added bath.

  • PDF

Studies on Electroless Nickel Plating on Alumina Ceramics(I) on Empirical Deposition Rate in Electroless Nickel Plating (알루미나 세라믹스 표면에 무전해 환원 니켈막의 형성에 관한 연구(I) 무전해 니켈도금의 실험적 석출속도에 관한 연구)

  • Kim, Yong-Dai;Lee, Joon
    • Journal of the Korean institute of surface engineering
    • /
    • v.19 no.3
    • /
    • pp.109-120
    • /
    • 1986
  • The electroless nickel plating on high alumina ceramics was performed in the bath containing nickel chloride, sodium hypophosphite and mono- or bi-carboxylic acid as a complexing agent in order to examine the empirical rate law as well as the effects of the complexing agent, plating temperature and pH on the rate of deposition. Adding the carboxylic acid to the plating bath, the rate of deposition was increased considerably, and each of the complexing agents showed a maximum deposition rate plateau around a particular concentration of the complexing agent. The rate of deposition was increased with increasing either temperature or pH, but microstructure of the surface became more rough. Furthermore, empirical rate law of the elecltroless nickel deposition on high alumina ceramics was discussed with the activation energy and other rate parameters calculated.

  • PDF

The Effect of polyethlenglycol on Electrocrystallization of zine Coat (아연전기도금의 존착성에 미치는 폴리에탈렌글리콜의 영향)

  • 김현태;정원섭;조남웅
    • Journal of the Korean institute of surface engineering
    • /
    • v.30 no.2
    • /
    • pp.128-135
    • /
    • 1997
  • The effect of the polyethyledglycol(PEG) on the surface morphology and crystal orientation of electrodeposited zinc from a chloride (1.5M Zinc+7.0M chloriode) have been studied by means of electrochemical methodes, scanning electron microscopy, surface appearance measurement and X-ray diffraction patterns. The resistance of electrodeposit increased, whereas the evolution of hydrogen decreased with incrasing of molecular weight of the PEG. Large grains of electrodeposit were obtained from bath in the absence of organid additive. When the PEG was added, fine grained crystals were observed and the surface roughness was relatively small, but surface appearance deteriorated. The preferred orientation with a(101) plane parallel to the surface was obtained from the PEG addited bath.

  • PDF

Preparation of Conductive Silicone Rubber Sheets by Electroless Nickel Plating (무전해 니켈도금에 의한 도전성 실리콘고무 시트의 제조)

  • Lee, Byeong Woo;Lee, Jin Hee
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.5
    • /
    • pp.269-274
    • /
    • 2014
  • Electroless plating process as a solution deposition method is a viable means of preparing conductive metal films on non-conducting substrates through chemical reactions. In the present study, the preparation and properties of electroless Ni-plating on flexible silicone rubber are described. The process has been performed using a conventional Ni(P) chemical bath. Additives and complexing agents such as ammonium chloride and glycine were added and the reaction pH was controlled by NaOH aqueous solution. Ni deposition rate and crystallinity have been found to vary with pH and temperature of the plating bath. It was shown that Ni-films having the high crystallinity, enhanced adhesion and optimum electric conductivity were formed uniformly on silicone rubber substrates under pH 7 at $70^{\circ}C$. The conductive Ni-plated silicone rubber showed a high electromagnetic interference shielding effect in the 400 MHz-1 GHz range.

Electrowinning of Tungsten From Fused Bath Composed of Calcium Chloride, Calcium Oxide and Tungstic Oxide (텅그스텐의 熔融鹽電解)

  • Kim, Jae-Won;Lee, Dong-Nyung
    • Journal of the Korean Chemical Society
    • /
    • v.10 no.1
    • /
    • pp.32-42
    • /
    • 1966
  • The electrolysis of tungstic oxide dissolved in the bath of calcium chloride and calcium oxide was studied to produce metallic tungsten using carbon as anode and iron as cathode in the temperature range of 900^{\circ}$ to $1200^{\circ}C$. The binary phase diagrams $CaCl_2$-CaO and $CaCl_2-CaWO_4$ systems were constructed to determine the suitability of bath composition and the range of temperatures for the electrolysis. As $WO_3$ reacted with $CaCl_2$ to form oxychloride in the fused salt, the addition of the proper amount of CaO was necessary to avoid the loss of $WO_3$. The optimum compositions of fused bath were $CaCl_2$ 100 parts, CaO and $WO_3$ each 10 to 20 parts, with the CaO, $WO_3$ ratio greater than unity, to keep freezing point low and to prevent the vaporization of $CaCl_2$. The observed decomposition voltage at which $WO_3$ decomposes to W and CO was-0.1 volt, whereas the calculated was -0.3 volt. Metallic tungsten deposited at the cathode reacted easily with CO formed secondarily at the anode surface, to form WC below $1050^{\circ}C$, so that the cell temperature should be above $1050^{\circ}C$. The effects of cathode current densities on current efficiency were minor in the range of 1 to 5 $amp/cm^2$.

  • PDF