• 제목/요약/키워드: Chloride Ion Diffusion

검색결과 204건 처리시간 0.024초

혼화재를 혼입한 콘크리트의 염화물 고정화에 관한 실험적 연구 (Experimental Study of Chloride Binding in Concrete with Mneral Amixtures)

  • 박정준;고경택;김도겸;김성욱;하진규
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.787-792
    • /
    • 2001
  • The chloride ion penetrating into concrete is classified as the fixed chloride ion being bound in reacting to cement hydrate and the free chloride ion having a direct effect on rebar corrosion because being in solution inside porosity of concrete. Therefore, in order to study the diffusion properties of chloride ion, it is needed to evaluate binding chloride ion in concrete. In this study, we tried to give a fundamental information on diffusion of chloride ion in concrete with mineral admixtures through analysis of micro-structure transformations in concrete and effects on binding of chloride ion in cement paste when mixed with fly-ash, blast furnace slag, silica fume etc. which are used to improve durability and permeability of concrete

  • PDF

Modeling of ion diffusion coefficient in saturated concrete

  • Zuo, Xiao-Bao;Sun, Wei;Yu, Cheng;Wan, Xu-Rong
    • Computers and Concrete
    • /
    • 제7권5호
    • /
    • pp.421-435
    • /
    • 2010
  • This paper utilizes the modified Davis model and the mode coupling theory, as parts of the electrolyte solution theory, to investigate the diffusivity of the ion in concrete. Firstly, a computational model of the ion diffusion coefficient, which is associated with ion species, pore solution concentration, concrete mix parameters including water-cement ratio and cement volume fraction, and microstructure parameters such as the porosity and tortuosity, is proposed in the saturated concrete. Secondly, the experiments, on which the chloride diffusion coefficient is measured by the rapid chloride penetration test, have been carried out to investigate the validity of the proposed model. The results indicate that the chloride diffusion coefficient obtained by the proposed model is in agreement with the experimental result. Finally, numerical simulation has been completed to investigate the effects of the porosity, tortuosity, water-cement ratio, cement volume fraction and ion concentration in the pore solution on the ion diffusion coefficients. The results show that the ion diffusion coefficient in concrete increases with the porosity, water-cement ratio and cement volume fraction, while we see a decrease with the increasing of tortuosity. Meanwhile, the ion concentration produces more obvious effects on the diffusivity itself, but has almost no effects on the other ions.

광물질 혼화재가 콘크리트의 염소이온 확산계수에 미치는 영향 (Influence of Mineral Admixtures on the Diffusion Coefficient for Chloride Ion in Concrete)

  • 배수호;박재임;이광명;최성
    • 대한토목학회논문집
    • /
    • 제29권4A호
    • /
    • pp.347-353
    • /
    • 2009
  • 콘크리트 내의 염소이온 침투에 영향을 미치는 정성적인 주요 인자로는 물-결합재비, 시멘트 종류, 재령, 주위 환경의 염소이온 농도 및 건습조건 등이 있다. 이에 따라 이 연구에서는 염소이온 확산실험을 통해 시멘트 종류 및 환경조건이 염소이온 확산특성에 미치는 영향을 조사하였다. 이를 위하여 물-결합재비 32%, 38% 및 43%에 대해서 보통 포틀랜드 시멘트(OPC), 2성분계 시멘트(BBC) 및 3성분계 시멘트(TBC) 각각을 사용한 콘크리트의 확산계수를 측정하였으며, 또한 물-결합재비 43%에 대해서 표준양생 및 해양환경에 폭로된 콘크리트의 확산계수를 측정하였다. 그 결과, 염소이온 침투 저항성은 물-결합재비가 감소함에 따라 증가하고, 2성분계 및 3성분계 시멘트를 사용한 콘크리트의 침투 저항성이 OPC 콘크리트에 비하여 우수한 것으로 나타났다. 따라서, 염해환경에 노출된 철근콘크리트 구조물의 내구수명을 증진시키기 위하여 광물질 혼화재를 혼입한 2성분계 혹은 3성분계 시멘트의 사용이 요구된다. 한편, 현장 폭로 시편의 염소이온 침투 저항성은 일정하지 않은 대기온도 하에서 염소이온의 침투, 파랑 및 건습반복의 영향으로 표준양생 시편의 경우보다 다소 저하되는 것으로 나타났다.

Diffusion of Choline Chloride in Aqueous Solutions of Chondroitin Sulfate

  • Jung, Ok-Sun;Kim, Si-Joong;Kim, Hyoung-Man
    • Bulletin of the Korean Chemical Society
    • /
    • 제5권6호
    • /
    • pp.249-253
    • /
    • 1984
  • Mutual diffusion coefficients of choline chloride were determined by using the diaphragm cell method in aqueous solutions of chondroitin sulfate A at $25^{\circ}C$. The diffusion coefficients of choline chloride in 0.1g/100ml, 0.5g/100ml and 1g/100ml respectively of chondroitin sulfate solutions were compared with those of binary systems of water-choline chloride. At low concentrations, the diffusion coefficients of the choline chloride in the presence of chondroitin sulfate were significantly smaller than the values obtained in the absence of chondroitin sulfate, indicating a strong interaction between these solutes. The effect of this interaction on the diffusion of choline ion is largest at higher chondroitin sulfate concentrations and at lower choline chloride concentrations. The influence of chondroitin sulfate is overcome at higher choline chloride concentrations. Self-diffusion coefficients of choline ion in the presence of chondroitin sulfate are also obtained. Excellent agreements were obtained between the experimental data and the calculated values obtained by using the Manning's equations. These observations suggest that the interaction between choline chloride and chondroitin sulfate involves primarily a long range electrostatic effect and there is no appreciable "condensation" or binding of choline ion to the chondroitin sulfate.

혼합재 치환율에 따른 모르타르의 염소이온 확산 특성 (Characteristic of Chloride ion Diffusion in Mortar According to the Substitution Ratios of the Additive)

  • 양승규;정연식;이웅종;유재상;이종열
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.17-22
    • /
    • 2002
  • Chloride ions have a tendency to penetrate into concrete and proceed the corrosion by depassivating rebar surface. Thus the deteriorated concrete is subject to experience severe degrading of durability under marine environment. Physical properties of mortar, such as, compressive strength and penetration depth of chloride ion were investigated. And to investigate the effect of containing SG, FA in mortar, the diffusion coefficient of chloride was measured through an electro - migration test. The diffusion coefficient of chloride was decreased with the increase of replacement ratio of SG compared with plain specimen.

  • PDF

해안환경하에 있는 콘크리트의 염분침투해석 (The Analysis of Chloride Ion Penetration into a Concrete Structure in Marine Environment)

  • 조선규;전귀;신치범
    • 한국해양공학회지
    • /
    • 제12권3호통권29호
    • /
    • pp.68-74
    • /
    • 1998
  • An increase of concrete construction in marine environments as well as an increasing use of marine aggregate at the mixing stage of concrete has provoked an important problem. A high concentration of chloride ion in the vicinity of steel bars in concrete is the principal cause of premature reinforcement corrosion in concrete structures. In this study, the behavior of chloride ions introduced into concrete from concrete surface by marine evironment was analysed. A mathematical model including the diffusion of chloride ion in aqueous phase of pores, the adsorption and desorption of chloride ions to and from the surface of solid phase of concrete and the chemical reactions of chloride ions with solid phase was presented. Finite element method was employed to carry out numerical analysis. The results of this study may be used to predict the onset of reinforcement corrosion and to identify the maximum limit of chloride ions contained in concrete admixtures.

  • PDF

고로슬래그미분말 혼합 콘크리트의 공극구조 및 염소이온 확산특성 (Characteristic of Pore Structure and Chloride ion Diffusion in Concrete Containing GGBF)

  • 문한영;김홍삼;최두선
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.365-368
    • /
    • 2002
  • This paper considers transference number in calculating diffusion coefficient of chloride ions of concrete and mercury intrusion porosimetry to investigate the volume and distribution of pore size, respectively, analyzing and discussing the property of resistance to chloride ion of concrete with granulated blast furnace slag. The experimental results show that the diffusion coefficient of chloride ion decreases with the rise of quantity of granulated blast furnace slag and pore structure of concrete with granulated blast furnace slag is different from that of OPC concrete. And from the results of regression analysis, the result showed that the diffusion coefficient of chloride ions is affected by capillary pore above 50nm.

  • PDF

호염성 박테리아 기반 코팅재의 염소이온 확산계수 평가 (Evaluation of Chloride Ion Diffusion Coefficient of Coating Materials based on Halo-philic Bacteria)

  • 윤현섭;이재욱;양근혁
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2020년도 가을 학술논문 발표대회
    • /
    • pp.159-160
    • /
    • 2020
  • This study examined the potentials for developing a biological coating material with high chloride resistance. The bacteria strains isolated were Halomonas alkaliphile, Halomonas venusta, and Sulfidobacter mediterraneus. Test results revealed that the developed approach is very promising in reducing the chloride ion diffusion coefficient of concrete.

  • PDF

콘크리트 중의 공극 특성에 따른 전위차 염소이온 확산계수 (Effect of Pore-Characteristics of Concrete on the Diffusion Coefficient of Chloride Using the Accelerating Test Methods)

  • 문한영;김홍삼;최두선;오세민
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.711-714
    • /
    • 2003
  • Factors causing deterioration of concrete structures under marine environment are various, especially penetration and diffusion of chloride ion, carbon dioxide, and water through pore effects on the durability of concrete as well as mechanical properties of concrete. Pore of porous materials like concrete can be classified as micro-, meso-, and macro-pore. And pore of cement matrix is classified as pore which occupied by water, air void, and ITZ between cement paste and aggregates. In this study, to verify the relationship between pore of cement matrix and the property of chloride ion diffusivity, the regression analysis is producted. From the result of regression analysis, the average pore diameter more than total pore volume effects on the diffusivity of chloride ion.

  • PDF

혼화재를 사용한 콘크리트의 염소이온 확산 특성 (The Chloride Diffusion Properties of Concrete with Mineral Admixtures)

  • 박정준;고경택;김도겸;김성욱
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제8권2호
    • /
    • pp.239-246
    • /
    • 2004
  • 콘크리트의 구조물의 내구성을 향상시키기 위해서는 W/C의 감소, 피복두께의 증가, 혼화재의 사용 등을 예로 들 수 있다. 특히, 혼화재를 사용한 경우 콘크리트의 수밀성이 향상되고 구조체의 내구성이 향상되는 것으로 보고되고 있으나 염소이온 확산에 대해서는 보다 체계적인 연구를 수행할 필요가 있다. 또한 혼화재를 사용한 콘크리트의 경우, 혼화재 종류에 따라 포졸란반응 및 잠재수경성 등에 의해 콘크리트 내부조직의 변화가 발생하므로 콘크리트의 염소이온 확산에 대한 보다 정확한 평가를 위해서는 콘크리트 내부의 조직을 평가할 수 있는 요소들을 고려해야 한다. 이에 본 연구에서는 혼화재를 사용한 콘크리트의 내구수명을 평가하기 위한 연구의 일환으로 콘크리트의 압축강도, 공극률, 투기성을 물리적 특성으로 설정하고 이들과 염소이온 확산계수와의 관계를 분석하였다.