• Title/Summary/Keyword: Chloride Ion Diffusion

Search Result 205, Processing Time 0.023 seconds

An Experimental Study on the Quality Deviation of Concrete Using Premixed Cement and Non-Premixed Cement (프리믹스 혼합시멘트를 사용한 콘크리트의 품질편차에 관한 연구)

  • Bae, Jun-Young;Kim, Jong-Back;Cho, Sung-Hyun;Roh, Hyeon-Seung;Kim, Jung-Hwan;Park, Seung-Bum
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.569-572
    • /
    • 2008
  • This study carried out to evaluate the quality deviation according to Premixed and Non-Premixed cement for normal and high strength concrete using blast furnace slag and fly ash. The results of experiment are founded that concrete using premixed cement have more performance than non-premixed cement at a point of view for the quality deviations both strength and Chloride ion diffusion. Therefore, it is desirable that premixed cement should be used to decrease strength deviation in high strength concrete and durability deviation in normal strength concrete.

  • PDF

Evaluation of Chloride and Chemical Resistance of High Performance Mortar Mixed with Mineral Admixture (광물성 혼화재료를 혼입한 고성능 모르타르의 염해 및 화학저항성 평가)

  • Lee, Kyeo-Re;Han, Seung-Yeon;Choi, Sung-Yong;Yun, Kyong-Ku
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.618-625
    • /
    • 2018
  • With the passing of time, exposed concrete structures are affected by a range of environmental, chemical, and physical factors. These factors seep into the concrete and have a deleterious influence compared to the initial performance. The importance of identifying and preventing further performance degradation due to the occurrence of deterioration has been greatly emphasized. In recent years, evaluations of the target life have attracted increasing interest. During the freezing-melting effect, a part of the concrete undergoes swelling and shrinking repeatedly. At these times, chloride ions present in seawater penetrate into the concrete, and accelerate the deterioration due to the corrosion of reinforced bars in the concrete structures. For that reason, concrete structures located onshore with a freezing-melting effect are more prone to this type of deterioration than inland structures. The aim of this study was to develop a high performance mortar mixed with a mineral admixture for the durability properties of concrete structures near sea water. In addition, experimental studies were carried out on the strength and durability of mortar. The mixing ratio of the silica fume and meta kaolin was 3, 7 and 10 %, respectively. Furthermore, the ultra-fine fly ash was mixed at 5, 10, 15, and 20%. The mortar specimens prepared by mixing the admixtures were subjected to a static strength test on the 1st and 28th days of age and degradation acceleration tests, such as the chloride ion penetration resistance test, sulfuric acid resistance test, and salt resistant test, were carried out at 28 days of age. The chloride diffusion coefficient was calculated from a series of rapid chloride penetration tests, and used to estimate the life time against corrosion due to chloride ion penetration according to the KCI, ACI, and FIB codes. The life time of mortar with 10% meta kaolin was the longest with a service life of approximately 470 years according to the KCI code.

Preparation of diffusion dialysis membrane for acid recovery via a phase-inversion method

  • Khan, Muhammad Imran;Wu, Liang;Hossain, Md. Masem;Pan, Jiefeng;Ran, Jin;Mondal, Abhishek N.;Xu, Tongwen
    • Membrane and Water Treatment
    • /
    • v.6 no.5
    • /
    • pp.365-378
    • /
    • 2015
  • Herein, the preparation of anion exchange membrane (AEM) from brominated poly(2,6-dimethyl 1,6-phenylene oxide) BPPO and dimethylaniline (DMA) by phase-inversion process is reported. Anion exchange membranes (AEMs) are prepared by varying the DMA contents. Prepared AEMs show high thermal stability, water uptake (WR) around 202% to 226%, dimensional change ratios of 1.5% to 2.6% and ion exchange capacities (IECs) of 0.34 mmol/g to 0.82 mmol/g with contact angle of $59.18^{\circ}$ to $65.15^{\circ}$. These membranes are porous in nature as confirmed by SEM observation. The porous property of membranes are important as it could reduce the resistance of transportation of ions across the membranes. They have been used in diffusion dialysis (DD) process for recovery of hydrochloric acid (HCl) from the mixture of HCl and ferrous chloride ($FeCl_2$). Presence of $-N+(CH_3)_2C_6H_5Br^-$ as a functional group in membrane matrix facilitates its applications in DD process. The dialysis coefficients of hydrochloric acid ($U_H$) of the membranes are in range of 0.0016 m/h to 0.14 m/h and the separation factors (S) are in range of 2.09 to 7.32 in the $HCl/FeCl_2$ system at room temperature. The porous membrane structure and presence of amine functional group are responsible for the mechanism of diffusion dialysis (DD).

Experimental Study on the Penetration Depth and Concentration of Corrosion Inhibitor Using Press-in Method Into the Inside of Concrete (콘크리트 내부로의 압입공법을 사용한 방청제의 침투깊이 및 농도에 관한 실험적 연구)

  • Cho, Hyeong-Kyu;Yoo, Jo-Hyeong;Lee, Han-Seung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.5 s.57
    • /
    • pp.160-168
    • /
    • 2009
  • After steel bar was corroded it removes concrete contaminated, it does steel bar corrosion protection, repairing method and corrosion inhibitor spreading method are difficult to secure corrosion protection performance. Accordingly, in this research before Research and Development to penetrate corrosion inhibitor to high pressure by steel bar position, it measures penetration depth through corrosion inhibitor high pressure penetration experiment and amount of nitrite by position and then it predicts penetration depth in accordance with water-cement ratio, pressure, pressure time and it computed water-cement ratio, pressure, pressure time to be more than 0.6 mol ratio of chloride ion and nitrite to have outstanding corrosion protection performance. As a result of experiment, water-cement ratio gives the biggest influence to penetration of corrosion inhibitor and also the more depth of specimen becomes deep, concentration of penetrated corrosion inhibitor does not equal and becomes low.

Dehydration of Solid Food Material Immersed in Fluidized-Bed (유동층(流動層)에 의한 고체식품(固體食品)의 건조(乾燥))

  • Yu, Ju-Hyun;Lee, Shin-Young;Pyun, Yu-Ryang;Yang, Ryung
    • Korean Journal of Food Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.398-403
    • /
    • 1978
  • Squid was dried on the fluidized-bed in the drying chamber filled with solid particles which were also fluidized with hot-air, and effects of the fluidized particles, the squid's height from the grid and the drying temperature on the drying rate and quality of the squid were observed The mechanism of moisture transfer during the falling rate period was also derived. 1. Sodium chloride was found to be the most suitable fluidized particles and at an air velocity of 3.8 m/sec, optimal fluidization state of this particle was obtained. 2. Uniform profiles of temperature were obtained at a point 4 cm above the grid and the location of squid on the fluidized-bed observed to be suitable when it was 4 cm above the grid. 3. At an air velocity of 3.8 m/sec and when the location height of the squid on the fluidized-bed was 4 cm, the optimal temperature for the drying time which is required to reduce the moisture from 80.8% to 18-22% was 8.5 hours. 4. Drying data followed the empirical equation of unsteady state diffusion $log\;(\frac{W-We}{Wc-We})=-m{\theta}$ in the region of the moisture contents measured and the drying constant (m) was calculated as $0.32hr^{-1}$. These results suggested that the migration of moisture during the falling rate period is due to a diffusion type mechanism. 5. The short constant rate period was observed in the early stage and thereafter, drying was controlled by the falling rate period, and the time ratio of the fluidized bed drying to the through circulation drying for reducing the squid's moisture contents to the same level at the same drying temperature was 1 : 1.4 6. Comparisons of fluidized-bed dried squid and sun dried squid in sale showed that there was no significant change in qualities such as external appearance and hydrogen ion concentration of dry product.

  • PDF