• Title/Summary/Keyword: Chloride Diffusion Coefficient

Search Result 270, Processing Time 0.022 seconds

Evaluation on Chloride Attack Resistance of Recycled Fine Aggregate Mortar (순환잔골재 모르타르의 염해저항성 평가)

  • Jang, Hyun-Sik;Kim, Gyu-Yong;Yoon, Min-Ho;Choe, Gyeong-Cheol;Kim, Hong-Seop;Lee, Bo-Kyeong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.10a
    • /
    • pp.52-53
    • /
    • 2016
  • Mechanical properties and durability of recycled aggregate concrete was known to decrease due to the adhesive mortar of recycled aggregate. But in this study, As the result of chloride diffusion resistance of recycled fine aggregate mortar, the mechanical properties are reduced according to the increase of the substitute ratio of recycled fine aggregate. But the chloride diffusion coefficient was almost same with natural fine aggregate mortar.

  • PDF

Chloride Diffusion Coefficients in Cold Joint Concrete with GGBFS (고로슬래그 미분말을 혼입한 콜드조인트 콘크리트의 염화물 확산계수)

  • Oh, Kyeong-Seok;Mun, Jin-Man;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.5
    • /
    • pp.44-49
    • /
    • 2016
  • Among the deteriorating agents, chloride ion is reported to be one of the most harmful ions due to its rapid diffusion and direct effect on steel corrosion. Cold joint which occurs in mass concrete placing is vulnerable to shear resistance and more severe deterioration. The paper presents an quantitative evaluation of chloride diffusion coefficient in OPC(Ordinary Portland Cement) and GGBFS(Ground Granulated Blast Furnace Slag) concrete containing cold joint. GGBFS concrete shows $6.6{\times}10^{-12}m^2/sec$ which is almost 30% level of OPC concrete results and the trend is repeated in the case of cold joint concrete. Compared with OPC concrete, GGBFS concrete is evaluated to have better resistance to chloride penetration, showing 0.30 times of chloride diffusion coefficient in concrete without cold joint 0.39 times with cold joint, respectively.

Changes in Cement Hydrate Characteristics and Chloride Diffusivity in High Performance Concrete with Ages (재령에 따른 고성능 콘크리트의 수화 특성치와 염화물 확산성 변화)

  • Koh, Tae-Ho;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.6
    • /
    • pp.9-17
    • /
    • 2019
  • Cement hydrates and the related characteristics change with ages, and the behaviors are much related with chloride diffusion. In this work, 30% replacement ratio with FA(Fly Ash) and GGBFS(Ground Granulated Blast Furnace Slag) are considered for concrete with three levels of W/B (Water to Binder ratio) and 2 years of curing period. Chloride diffusion coefficients from accelerated condition are obtained at 5 measurement period (28days, 56days, 180days, 365days, and 730days), and the results are compared with porosity, binding capacity, and permeability from program-DUCOM. The similar changing pattern between chloride diffusion and permeability is observed since permeability is proportional to the square of porosity. Curing period is grouped into 4 periods and the changing ratios are investigated. Cement hydrate characteristics such as porosity, permeability, and diffusion coefficient are dominantly changed at the early ages (28~56 days), and diffusion coefficient in OPC concrete with low W/B continuously changes to 180days.

Modeling of chloride diffusion in concrete considering wedge-shaped single crack and steady-state condition

  • Yang, Keun-Hyeok;Cheon, Ju Hyun;Kwon, Seung-Jun
    • Computers and Concrete
    • /
    • v.19 no.2
    • /
    • pp.211-216
    • /
    • 2017
  • Crack on concrete surface allows more rapid penetration of chlorides. Crack width and depth are dominant parameters for chloride behavior, however their effects on chloride penetration are difficult to quantify. In the present work, the previous anisotropic (1-D) model on chloride diffusion in concrete with single crack is improved considering crack shape and roughness. In the previous model, parallel-piped shape was adopted for crack shape in steady-state condition. The previous model with single crack is improved considering wedge shape of crack profile and roughness. For verifying the proposed model, concrete samples for nuclear power plant are prepared and various crack widths are induced 0.0 to 1.2 mm. The chloride diffusion coefficients in steady-state condition are evaluated and compared with simulation results. The proposed model which can handle crack shape and roughness factor is evaluated to decrease chloride diffusion and can provide more reasonable results due to reduced area of crack profile. The roughness effect on diffusion is evaluated to be 10-20% of reduction in chloride diffusion.

Application of Colorimetric Method for Evaluation of Apparent Chloride Diffusion Coefficient of Concrete (콘크리트 중 겉보기 염소이온 확산계수 추정을 위한 비색법의 적용)

  • 문한영;김홍삼;최두선;오세민
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.541-544
    • /
    • 2003
  • Chloride diffusivity is one of the important properties of concrete affecting the durability of a structure. The diffusivity for porous materials is determined conventionally by immersion in a solution. However, this method is complicate and time-consuming, often requiring months or years to obtain results. Thus, the application of colorimetric method to estimate the apparent diffusivity of chloride ion was verified in this study. The result reveals that the apparent diffusivity of chloride ion can be predicted to use colorimetric method. Additionally the colorimetric method is capable to predict the profile of chloride ion.

  • PDF

Study on Optimum Mixture Design for Service Life of RC Structure subjected to Chloride Attack - Genetic Algorithm Application (염해에 노출된 콘크리트의 내구수명 확보를 위한 최적 배합 도출에 대한 연구 - 유전자 알고리즘의 적용)

  • Kwon, Seung-Jun;Lee, Sung Chil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.5A
    • /
    • pp.433-442
    • /
    • 2010
  • A control of chloride diffusion coefficient is very essential for service life of reinforced concrete (RC) structures exposed to chloride attack so that much studies have been focused on this work. The purpose of this study is to derive the intended diffusion coefficient which satisfies intended service life and propose a technique for optimum concrete mixture through genetic algorithm(GA). For this study, 30 data with mixture proportions and related diffusion coefficients are analyzed. Utilizing 27 data, fitness function for diffusion coefficient is obtained with variables of water to binder ratio(W/B), weight of cement, mineral admixture(slag, flay ash, and silica fume), sand, and coarse aggregate. 3 data are used for verification of the results from GA. Average error from fitness function is observed to 18.7% for 27 data for diffusion coefficient with 16.0% of coefficient of variance. For the verification using 3 data, a range of error for mixture proportions through GA is evaluated to 0.3~9.3% in 3 given diffusion coefficients. Assuming the durability design parameters like intended service life, cover depth, surface chloride content, and replacement ratio of mineral admixture, target diffusion coefficient, where exterior conditions like relative humidity(R.H.) and temperature, is derived and optimum design mixtures for concrete are proposed. In this paper, applicability of GA is attempted for durability mixture design and the proposed technique would be improved with enhancement of comprehensive data set including wider range of diffusion coefficients.

Chloride Penetration of Concrete Mixed with High Volume Fly Ash and Blast Furnace Slag (FA 및 BFS를 다량 혼입한 콘크리트의 염분침투성)

  • Park, Ki-Cheul;Lim, Nam-Gi
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.1
    • /
    • pp.90-99
    • /
    • 2015
  • This study examined dynamic and characteristics and chloride penetration of concrete mixed with large amount of FA and BFS, which are considered for positive application to construction fields with purpose of long-tern durability of concrete structures. As a result of strength test on FA and BFS, FA concrete showed higher increase of strength compared to OPC, when FA4000 and FA5000 were mixed 30%, respectively. For BFS concrete, those mixed with 30% and 50% of BFS8000, respectively, showed higher or equivalent strength compare to OPC. As a result of test of chloride penetration on FA and BFS, diffusion coefficients of concrete mixed with 30% FA4000 and FA5000, respectively, showed to restrain average 6.5% of diffusion coefficient compared to OPC. And in case of BFS concrete, those mixed with BFS6000 and BFS8000, restrained diffusion of chloride ions 253% and 336%, respectively, compared to OPC. Therefore, Mixing 50% of BFS was most efficient in order to maximize restraint of chloride penetration according to metathesis of large amount. For relation between compression strength and diffusion coefficient of FA and BFS concrete, as strength increased, diffusion coefficient decreased. In this study, when mixing FA and BFS to concrete for long-run durability and restraint against chloride penetration, for FA, mixing it to concrete with less or equivalent 30% of replacement rate was most efficient. And for BFS, as fineness was higher and mixing it to concrete with less or equivalent 50% of replacement rate, there were results of higher strength compared to OPC and more efficient restraint of chloride ions.

Analysis Technique for Chloride Penetration using Double-layer and Time-Dependent Chloride Diffusion in Concrete (콘크리트내의 이중구조와 시간의존성을 고려한 염화물 해석기법의 개발)

  • Mun, Jin-Man;Kim, Jin-Yeong;Kim, Young-Joon;Oh, Gyeong-Seok;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.5
    • /
    • pp.83-91
    • /
    • 2015
  • With varying conditions of concrete surface, induced chloride contents are changed and this is a key parameter for steel corrosion and service life in RC (Reinforced Concrete) structures. Many surface enhancement techniques using impregnation have been developed, however the evaluation techniques for chloride behavior through doubly layered media and time-dependent diffusion are rarely proposed. This paper presents an analysis technique considering double-layer concrete and time-dependent diffusion behavior, and the results are compared with those from the previous test results through reverse analysis. The chloride profiles from the surface-impregnated concrete exposed to atmospheric, tidal, submerged zone for 2 years are adopted. Furthermore surface chloride contents and diffusion coefficients are obtained, and are compared with those from Life365. Through consideration of time effect, the relative error decreases from 0.28 to 0.20 in atmospheric, 0.29 to 0.11 in tidal, and 0.54 to 0.40 in submerged zone, respectively, which shows more reasonable results. Utilizing the diffusion coefficients from Life365, relative errors increases and it needs deeper penetration depth (e) and lower diffusion coefficient ratio ($D_1/D_2$) due to higher diffusion coefficient.

Effect of Mineral Admixture on Coefficient of Chloride Diffusion in Concrete (광물질 혼화재가 콘크리트의 염화물 확산계수에 미치는 영향)

  • 김명유;양은익;민석홍;심상배;최중철;이광교
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.281-284
    • /
    • 2003
  • When concrete structures are exposed under marine condition for a long time, the steel in concrete is corroded due to the ingression of chlorides in the sea water. Because the damages of corrosion resulting from the chloride ion are very serious, many research have been performed. In this study, it was experimentally investigated that the mechanical and diffusion characteristics of concrete substituted with ordinary portland cement, silica fume and blast furnace slag to investigate the chloride ingress characteristics with concrete quality. Chloride diffusion coefficients in concrete shows increasing tendency as w/c ratio increase. Also test results indicate that blend of admixture become lower chloride diffusion coefficients in concrete as compared with normal concrete.

  • PDF

Chloride-Penetration Analysis in Cracked Early-Age Concrete (균열을 갖는 초기재령 콘크리트의 염화물 침투 해석)

  • 송하원;박상순;변근주
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.635-640
    • /
    • 2001
  • In this study, a mathematical model is established for prediction of chloride penetration in unsaturated cracked early-age concrete. The model is combined with models for thermo-hygro dynamic coupling of cement hydration, moisture transport and micro-structure development. Chloride permeability and water permeability at cracked early-age concrete specimens are evaluated using a rapid chloride permeability test and a low-pressure water permeability test, respectively. Then, a homogenization technique is introduced into the model to determine equivalent diffusion coefficient and equivalent Permeation coefficient. Increased chloride transport due to cracks at the specimen could be predicted fairly well by characterizing the cracks using proposed model. Proposed model is verified by comparing diffusion analysis results with test results.

  • PDF