• Title/Summary/Keyword: Chloride Diffusion Coefficient

Search Result 270, Processing Time 0.02 seconds

The Investigation of Crack widths for the Effect of Cracks on Chloride Penetration of Concrete (콘코리트 중의 염화물 침투에 영향을 미치는 균열폭에 대한 고찰)

  • Yoon, In-Seok;Erik, Schlangen;Breuged, Klaas Van
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.945-948
    • /
    • 2006
  • Chloride penetration into concrete is a hot issue of concern all over the world, notwithstanding, very few attempts have been conducted to explore the effect of cracks on choride penetration. Cracks provoke to lose a main function of watertightness of concrete and lead to reduce the service life of concrete. For this reason, it is necessary to define a critical crack width to prevent a quick chloride penetration through crack. In this study, experiment is focused on establishing a critical crack width in terms of chloride penetration. Concrete specimens with different crack widths I crack lengths have been subjected to rapid chloride migration testing. In a side of analytical solution, a simple approach to quantify the chloride diffusion coefficient of only crack zone excluding sound concrete was proposed. The result clearly showed a critical crack width of 0.03 mm. Based on the experimental results, a phenomenological model was proposed to explain the meaning of critical crack width in practical engineering. In this model, cracked concrete zone was divided into three zones. These zones corresponded to a wide crack, a zone with micro-cracks and an uncracked zone.

  • PDF

Penetration of De-icing Salt in Bare Concrete Bridge Decks on Highways (고속도로 콘크리트 노출 바닥판에서의 제설 염화물의 침투 특성)

  • Suh, Jin-Won;Rhee, Ji-Young;Ku, Bon-Sung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.165-168
    • /
    • 2006
  • The major cause of deterioration for the bare concrete bridge decks exposed to de-icing chemicals would be chloride-induced reinforcement corrosion. Thus, in this paper, in order to predict time to corrode for concrete bridge decks on highways, the chloride concentration was measured with depth from the surface. Then, the surface chloride concentration and apparent diffusion coefficient were calculated by regression. The premature failure of bare concrete decks were mostly related with thin cover depth and poor concrete property(high permeability). The good protection of deck surface might contribute to the prolongation of the service life of bare concrete bridge decks.

  • PDF

Durability Performance of Concrete using Rice Husk Ash

  • Jeong, Euy-Chang;Shin, Sang-Yeop;Kim, Young-Soo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.13 no.2
    • /
    • pp.139-147
    • /
    • 2013
  • The purpose of this study was to investigate the durability performance of concrete that includes rice husk ash. Chloride diffusion coefficient obtained through a rapid chloride penetration test and depth of $CO_2$ penetration obtained through a rapid carbonation test were used to evaluate latent durability. Durability characteristics for rice husk ash replacement and age were determined. Through the experiment, it was found that when the replacement ratio of rice husk ash was increased from 0% to 10%, the compressive strength of concrete containing rice husk ash was similar to that of concrete containing silica fume. This shows that the durability performance of concrete containing rice husk is excellent compared to other concretes containing admixtures.

Development of Testing and Analysis Model for Evaluation of Absorbed Water Diffusion into Concrete (콘크리트 흡수 수분확산계수 산정을 위한 실험 및 수치해석 모델 개발)

  • Park, Dong-Cheon;Ahn, Jae-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.4
    • /
    • pp.371-378
    • /
    • 2011
  • Concrete is affected by various deterioration factors, such as $CO_2$ and chloride ions from the sea, which cause carbonation and salt attack on concrete. These deterioration phenomena cause steel corrosion in RC structures. Although a great deal of research has been carried out in this area thus far, it is difficult to know the point at which corrosion will occur to a reinforced bar. As the diffusion of deterioration factors depends on the water content in concrete, it is imperative to assess the condition of absorbed water content. A mass measuring method was applied to calculate the absorbed water diffusion coefficient, as well as non-linear finite element method(FEM) analysis. As a result, it was found that W/C and unit water content in concrete mixture affect the diffusion coefficient decision.

Enhancement of mechanical and durability properties of preplaced lightweight aggregate concrete

  • Bo Peng;Jiantao Wang;Xianzheng Dong;Feihua Yang;Chuming Sheng;Yunpeng Liu
    • Advances in concrete construction
    • /
    • v.15 no.6
    • /
    • pp.419-430
    • /
    • 2023
  • In this study, the effect of two types of aggregates (fly ash aggregate and shale aggregate) on the density, strength, and durability of preplaced lightweight aggregate concrete (PLWAC) was studied. The results showed that the 7 - 28 days strength of concrete prepared with fly ash aggregates (high water absorption rate) significantly increased, which could attribute to the long-term water release of fly ash aggregates by the refined pore structure. In contrast, the strength increase of concrete prepared with shale aggregates (low water absorption rate) is not apparent. Although PLWAC prepared with fly ash aggregates has a lower density and higher strength (56.8 MPa @ 1600 kg/m3), the chloride diffusion coefficient is relatively high, which could attribute to the diffusion paths established by connected porous aggregates and the negative over-curing effect. Compared to the control group, the partial replacement of fly ash aggregates (30%) with asphalt emulsion (20% solid content) coated aggregates can reduce the chloride diffusion coefficient of concrete by 53.6% while increasing the peak load obtained in a three-point bending test by 107.3%, fracture energy by 30.3% and characteristic length by 103.5%. The improvement in concrete performance could be attributed to the reduction in the water absorption rate of aggregates and increased energy absorption by polymer during crack propagation.

Evaluation of Chloride Diffusion Behavior and Analysis of Probabilistic Service Life in Long Term Aged GGBFS Concrete (장기 재령 GGBFS 콘크리트의 염화물 확산 거동 평가 및 확률론적 염해 내구수명 해석)

  • Yoon, Yong-Sik;Kim, Tae-Hoon;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.3
    • /
    • pp.47-56
    • /
    • 2020
  • In this study, three levels of W/B(Water to Binder) ratio (0.37, 0.42, 0.47) and substitution ratio of GGBFS (Ground Granulated Blast Furnace Slag) rate (0 %, 30 %, 50 %) were considered to perform RCPT (Rapid Chloride Diffusion Test) at the 1,095 aged day. Accelerated chloride diffusion coefficient and passed charge of each concrete mixture were assessed according to Tang's method and ASTM C 1202, and improving behaviors of durability performance with increasing aged days are analyzed based on the test results of previous aged days from the preceding study. As the age of concrete increases, the passed charge and diffusion coefficient have been significantly reduced, and especially the concrete specimens containing GGBFS showed a significantly more reduction than OPC(Ordinary Portland Cement) concrete specimen by latent hydraulic activity. In the case of OPC concrete's results of passed charge, at the 1,095 days, two of them were still in the "Moderate" class. So, if only OPC is used as the binder of concrete, the resistance performance for chloride attack is weak. In this study, the time-parameters (m) were derived based on the results of the accelerated chloride diffusion coefficient, and the deterministic and probabilistic analysis for service life were performed by assuming the design variable as a probability function. For probabilistic service life analysis, durability failure probabilities were calculated using Monte Carlo Simulation (MCS) to evaluate service life. The service life of probabilistic method were lower than that of deterministic method, since the target value of PDF (Probability of Durability Failure) was set very low at 10 %. If the target value of PDF suitable for the purpose of using structure can be set and proper variability can be considered for each design variable, it is believed that more economical durability design can be made.

Evaluation of Service Life in RC Column under Chloride Attack through Field Investigation: Deterministic and Probabilistic Approaches (염해 실태조사를 통한 철근 콘크리트 교각의 내구수명 평가 - 결정론적 및 확률론적 해석방법)

  • Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.5
    • /
    • pp.67-74
    • /
    • 2015
  • RC (Reinforced Concrete) structures are considered as cost-benefit and durable however performances of structural safety and durability are degraded due to steel corrosion. Service life in RC structure is differently evaluated due to different local environmental conditions even if it is exposed to the same chloride attack. In the paper, 25 concrete cores from field investigation are obtained from 4 RC columns with duration of 3.5~4.5 years exposed to sea water. Through total chloride content measurement, surface chloride contents and apparent diffusion coefficients are evaluated. Service life of the target structure is estimated through deterministic method based on Fick's $2^{nd}$ Law and probabilistic method based on durability failure probability, respectively. Probability method is evaluated to be more conservative and relatively decreased service life is evaluated in tidal zone and splash zone over 40.0 m. Chloride penetration behavior with coring location from sea level and the present limitations of durability design method are investigated in the paper.

Electrogravimetric and Electrochemical Ac Response of Polypyrrole Films

  • Yang, Haesik;Lee, Hochun;Kwak, Juhyoun
    • Analytical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.663-668
    • /
    • 1995
  • Ion transport of a polypyrrole/chloride (PPy/Cl) film and a polypyrrole/poly(styenesulfonate) (PPy/PSS) film as a function of applied dc potential was investigated by employing electrogravimetric impedance technique and electrochemical impedance technique. The cation and anion contribution to the whole charge capacitance and the diffusion coefficients of cation and anion in a PPy/PSS film were calculated by fitting the electrogravimetric impedance data with proposed model circuit. The diffusion coefficients of $Na^+$ in a 1 M $NaClO_4$ solution are over 1 order of magnitude larger than those of $ClO{_4}^-$, and $ClO{_4}^-$ contribution to charge compensation decreases as dc potential lowers. The charge compensation of a PPy/Cl film ir a 1 M CsCl solution is carried out largely by $Cl^-$ at 0.2 V vs. Ag/AgCl and by $Cs^+$ as well as $Cl^-$ at -0.4 V.

  • PDF

Assessment of some parameters of corrosion initiation prediction of reinforced concrete in marine environments

  • Moodi, Faramarz;Ramezanianpour, Aliakbar;Jahangiri, Ehsan
    • Computers and Concrete
    • /
    • v.13 no.1
    • /
    • pp.71-82
    • /
    • 2014
  • Chloride ion ingress is one of the major problems that affect the durability of concrete structures such as bridge decks, concrete pavements, and other structures exposed to harsh saline environments. Therefore, durability based design of concrete structures in severe condition has gained great significance in recent decades and various mathematical models for estimating the service life of rein-forced concrete have been proposed. In spite of comprehensive researches on the corrosion of rein-forced concrete, there are still various controversial concepts in quantitation of durability parameters such as chloride diffusion coefficient and surface chloride content. Effect of environment conditions on the durability of concrete structures is one of the most important issues. Hence, regional investigations are necessary for durability based design and evaluation of the models. Persian Gulf is one of the most aggressive regions of the world because of elevated temperature and humidity as well as high content of chloride ions in seawater. The aim of this study is evaluation of some parameters of durability of RC structures in marine environment from viewpoint of corrosion initiation. For this purpose, some experiments were carried out on the real RC structures and in laboratory. The result showed that various uncertainties in parameters of durability were existed.

Diffusion of Cr(VI) in Porous Media (심층 지하에서의 육가 크롬 확산)

  • 현재혁
    • The Journal of Engineering Geology
    • /
    • v.3 no.2
    • /
    • pp.203-214
    • /
    • 1993
  • Underground Injection Control regulations for Class I injection wells require that the vertical dufusion be considered as a mechanism for transport of contaninants in evaluating containment Due to the low permeability in the confining aquitard, the movement of contaminants over the long term is controlled by the molecular diffusion. The movement can be predicted, using the Fick' S second law of diffusion. The diffusion coefficient in Fick' s law has been determined experimentally in this study. Instantaneous injection of $^{51}Cr$ was used to trace the distribution of Cr(VI) in soil plugs and an analytical solution was applied to calculate the diffusion coefficients. This study shows the effect of environmental factors, such as temperature, chloride concentration, applied amount of $^{51}Cr$, and bulk density of injection formations on diffusion of Cr(VI)

  • PDF