• Title/Summary/Keyword: Chlorella salina

Search Result 7, Processing Time 0.024 seconds

Comparison of Biomass Productivity of Two Green Microalgae through Continuous Cultivation (두 종 미세 녹조류의 연속배양을 통한 바이오매스 생산성 비교)

  • Gim, Geun-Ho;Lee, Young-Mi;Kim, Duk-Jin;Jeong, Sang-Hwa;Kim, Si-Wouk
    • KSBB Journal
    • /
    • v.27 no.2
    • /
    • pp.97-102
    • /
    • 2012
  • In the present study, the biomass productivity of two green microalgae (Chlorella sp. and Dunaliella salina DCCBC2) were assessed in a 12 L tubular photobioreactor under optimum culture conditions. In the batch culture optimization process, the Chlorella sp. biomass was obtained as 1.2 g/L under atmospheric air as a sole $CO_2$ source and other culture conditions as follows: light intensity, temperature, pH, $NH_4Cl$ and $K_2HPO_4$ were 100 ${\mu}E/m^2/s$, $27^{\circ}C$, 7.0, 20.0 mM and 2.0 mM, respectively. On the other hand, 2.9 g/L of D. salina DCCBC2 biomass production was observed under the following conditions: light intensity, temperature, pH, $KNO_3$ and $K_2HPO_4$were 80 ${\mu}E/m^2/s$, $27^{\circ}C$, 8.0, 3.0 mM and 0.025 mM, respectively. At 1% $CO_2$ supply to the reactor, the Chlorella sp. production was reached 1.53 g/L with 25% increment under the same operating conditions. In addition, the maximum D. salina DCCBC2 biomass was observed as 3.40 g/L at 3% $CO_2$ concentration. Based on the aforementioned optimized conditions, the dilution rate and maximal biomass productivity of Chlorella sp. and D. salina DCCBC2 in the continuous cultivation were 0.4/d and 0.6 g/L/d and 0.6/d and 1.5 g/L/d, respectively.

Dunaliella salina as a Microalgal Biomass for Biogas Production (바이오 가스 생산을 위한 미세조류 바이오매스로서의 Dunaliella salina)

  • Jeon, Nayeong;Kim, Daehee;An, Junyeong;Kim, Taeyoung;Gim, Geun Ho;Kang, Chang Min;Kim, Duk Jin;Kim, Si Wouk;Chang, In Seop
    • Microbiology and Biotechnology Letters
    • /
    • v.40 no.3
    • /
    • pp.282-285
    • /
    • 2012
  • In this study, the ability of Chlorella vulgaris and Dunaliella salina to use biomass resources for anaerobic digestive biogas production was examined. The differences in cell wall structure pretreatments affecting the yield of soluble products showed that D. salina is a better candidate for biogas production than C. vulgaris. There was no significant difference between pretreated and non-pretreated D. salina in terms of methane production yield by inocula obtained from anaerobic digestion systems. Therefore, D. salina is a suitable algal biomass for biogas production due to its high biomass productivity, simple pretreatment needs, and easy conversion to biogas.

High-Density Cultivation of Microalgae using Microencapsulation (Microencapsulation에 의한 미세조류의 고밀도 배양)

  • HAN Young-Ho;LEE Jung-Suck;KWAK Jung-Ki;LEE Eung-Ho;CHO Man-Gi
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.32 no.2
    • /
    • pp.186-191
    • /
    • 1999
  • The three speices of miroalgae (Chlorella vulgaris, Dunaliella salina and Porphyridium purpureum) were immobilized in Ca-alginate capsules as a basic study for development of economic cultivation process, and then were cultivated in an air-bubble column bioreactor. Under the batch culture of aerobic conditions, the thickness of the capsule membrane and $CO_2$ supply did not affect the growth of the immobilized microalga, Chlorella vulgaris. Cell concentration of immobilized microalgae in the capsule was higher than those of imobilized microalgae in beads and free cells. The cell concentration of microencapsulated Dunaliella salina was greater about 5 times than that of free cells. Based on these results, it is concluded that the application of microencapsulation technology to the culture of microalgae was an effective method for high-density cultivation.

  • PDF

Optimum Culture Conditions of Four Species of Microalgae as Live Food from China (중국산 식물먹이생물 4종의 최적 배양환경)

  • 박정은;허성범
    • Journal of Aquaculture
    • /
    • v.13 no.2
    • /
    • pp.107-117
    • /
    • 2000
  • Optima for temperature, salinity and light intensity for Nitzschia closterium, Chlorella salina, I내초교냔 galbana and Tetraselmis subcordiformis, which are widely used in bivalve hatcheries of Shandong Province in China, were estimated. The temperature optimum was 23 $^{\circ}C$ for N. closterium and I. galbana and 25 and 27$^{\circ}C$ for C. salina and T. subcordiformis, respectively. That for salinity was 23${\textperthousand}$ for N. closterium and T, subcordiformis, but was 33${\textperthousand}$ for C. salina and I. galbana. In general, all the four microalgae grew faster under 6,000 lux than under 4,000 lux. Growth of N. closterium was faster at $25^{\circ}C$ and dropped abruptly >$25^{\circ}C$, and that of C. salina and T. subcordiformis progressively increased upto $25^{\circ}C$ but dropped beyond 27$^{\circ}C$. T. subcordiformis was the most eurythermal among the 4 species. For mass culture of microalgae in Korea, N. closterium and C. salina are suitable during spring and autumn but C. salina and I. galbana during summer. T. subcordiformis is suitable for culture throughout the year.

  • PDF

Effect of Temperature-induced Two-stage Cultivation on the Lipid and Saccharide Accumulation of Microalgae Chlorella vulgaris and Dunaliella salina (온도에 의해 유도된 2단계 배양전략을 통한 미세조류 Chlorella vulgaris와 Dunaliella salina의 지질과 탄수화물의 축적량 변화)

  • Lee, Yeon-Ji;Lee, Chi-Heon;Cho, Kichul;Moon, Hye-Na;Namgung, Jin;Kim, Ki-hyuk;Lim, Byung-Jin;Kim, Daekyung;Yeo, In-Kyu
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.50 no.1
    • /
    • pp.32-40
    • /
    • 2017
  • The aim of this study was to evaluate a temperature-induced two-stage cultivation (TTC) strategy for the regulation of lipid and carbohydrate production by two microalgae, Chlorella vulgaris and Dunaliella salina, for biofuel production. The microalgae were grown under several temperature conditions (15, 25, 35, and $45^{\circ}C$) and optimal growth was observed at $25^{\circ}C$ for both microalgae. To test the TTC, aseptically cultured microalgae were incubated under optimal conditions ($25^{\circ}C$) for 20 days, and then divided into four aliquots that were incubated at 15, 25, 35, and $45^{\circ}C$ for 5 days. Similar but somewhat decreased growth rates were observed at the non-optimal temperatures (15, 35, and $45^{\circ}C$). In addition, while total lipid accumulation increased in a temperature-dependent manner in both microalgae, total carbohydrate increased with temperature in C. vulgaris but decreased in D. salina. However, for lipid and carbohydrate production, while the highest lipid productions of C. vulgaris and D. salina were observed at $25^{\circ}C$ and $35^{\circ}C$, respectively, the highest total carbohydrate productions of C. vulgaris and D. salina were obtained at $15^{\circ}C$ and $25^{\circ}C$, respectively. These results suggest that the TTC strategy may be easily and efficiently applied to bioprocessing for biofuel production.

The Structure of Digestive Tract and Histological Features of the Larvae in Sevenband Grouper, Epinephelus septemfasciatus (능성어 (Epinephelus septemfasciatus) 자어의 소화기관 구조 및 조직학적 특징)

  • Park, Jong Youn;Kim, Na Ri;Park, Jae Min;Myeong, Jeong In;Cho, Jae Kwon
    • Korean Journal of Ichthyology
    • /
    • v.28 no.1
    • /
    • pp.9-18
    • /
    • 2016
  • Histological and morphological development of the digestive tract of sevenband grouper were observed from after hatching to 60 days. Fishes were fed with rotifer (Brachionus rotundiformis) and chlorella (Chlorella ellipsoidea) after hatching from 2 to 20 days rotifer and brine shrimp (Artemia salina) in after 20 days rotifer, brine shrimp and semi-dry artificial diet in after 23 days. Histological and morphological development of ten larvae was observed by paraffin embedding method after fixing in 10% neutral buffered formalin. Sevenband grouper RLG showed characteristics of carnivorous fish by average 0.87. Larvae after hatching can't open the mouth and anus digestive tract was observed in a straight line following yolk sac. Larvae was observed feeding activity by opening the mouth and anus. Metamorphosis started 8 days after hatching. Esophagus divided four layer, and goblet cell was observed in esophagus, mid intestine and rectum. Larvae started cannibalism and it was caused by difference of growth. The inside of stomach was differentiated to cardiac orifice, body of stomach, pyloric stomach, and pyloric caeca. Goblet cell was observed all intestine. Gastric gland differentiated after hatching 28 days in stomach. Secretion of gastric juice was found at stomach and mucosal fold pyloric caeca. Even thought the inside of stomach expended and the number of gastric gland increased consistently and goblet cell in intestine and mucosa became longer, histochemical changes follow couldn't be found during transforming juveniles 38 days after hatching.

Evaluation of the ETRmax in Microalgae Using the PHYTO-PAM Fluorometer (광합성 측정기를 이용한 미세조류의 광합성 효율 측정)

  • Cho, Eun-Seob;Lee, Pil-Yong;Oh, Hyun-Ju;Choi, Yoon-Seok;Choi, Yang-Ho;Lee, Sam-Geun
    • Journal of Environmental Science International
    • /
    • v.15 no.8
    • /
    • pp.727-735
    • /
    • 2006
  • In this study, the PHYTO-PAM-fluorometric method was used to evaluate the ETR$_{max}$ in terms of sensitivity to DIN/DIP against 14 microalgae: Prorocentrum micans, Heterocapsa triquetra, Gymnodinium impudicum, Cymnodinium catenatum, Amphidinium caterae, Chlorella vulgaris, Chroococcus minutus, Microcystis aeruginosa, Chlorella ellipsoidea, Nannochloris oculata, Oocystis lacustris, Chroomonas salina, Gloeocystis gigas, and Prymnessium parvum. We found that P. micans, H. triquetra, and A. caterae exposed to the maximum level of DIN/DIP were significantly smaller in the ETR$_{max}$ than that of the minimum and moderate mixture. Unlikely the ETR$_{max}$, the initial slope alpha was not significantly different at the level of 60 DIN/DIP. In G. catenatum, the moderate levels of 15 and 20 in DIN/DIP were found to be significantly different from the ETR$_{max}$ at Chl-Ch4. Gymnodinium impudicum had a higher value than that of the ETR$_{max}$ than that of dinoflagellates used in this study, ranging from 306.1 (Ch4, DIN/DIP: 10) to 520.1 (Ch4, DIN/DIP: 30). The ETR$_{max}$ value obtained from other microalgae was similar to C. impudicum at any of the ratios of DIN/DIP and channels. Consequently, the influence of offshore water current assures us of the suppression of photosynthesis and electron transport rate in dinoflagellates. Gymnodinium impudicum has not been researched in the area of red tides in Korea, but it will be enough to creat the massive algal blooms in the future because of higher potential photochemical availability.