• Title/Summary/Keyword: Chlor-Alkali Process

Search Result 8, Processing Time 0.024 seconds

Chlor-alkali Membrane Process and its Prospects (클로알칼리 멤브레인법과 전망)

  • Park, In Kee;Lee, Chang Hyun
    • Membrane Journal
    • /
    • v.25 no.3
    • /
    • pp.203-215
    • /
    • 2015
  • Chlor-alkali (CA) membrane process is based on salined water electrolysis employing cation condutive polymer electrolytes, which has been used for the conventional production of both sodium hydroxide and chlorine gas. The CA membrane process has advantages such as relatively low environmental impacts and fairly reduced energy consumption, when compared with diaphragm and mercury process. In this review articles, basic concepts, fundamental characteristics, key technologies of CA membrane process are dealt with in detail. In addition, advanced technologies associated with CA membrane process are described. They include zerogap and oxygen depolarized cathode technologies to improve energy efficiency during the electrolysis. Carbon dioxide mineralization technology will also be introduced as an example of hybridization with different technologies. Finally, current market trend in CA membrane process will be presented.

A Review of Chlorine Evolution Mechanism on Dimensionally Stable Anode (DSA®) (DSA 전극에서 염소 발생 메커니즘)

  • Kim, Jiye;Kim, Choonsoo;Kim, Seonghwan;Yoon, Jeyong
    • Korean Chemical Engineering Research
    • /
    • v.53 no.5
    • /
    • pp.531-539
    • /
    • 2015
  • Chlor-alkali industry is one of the largest electrochemical processes which annually producing 70 million tons of sodium hydroxide and chlorine from sodium chloride solution. $DSA^{(R)}$ (Dimensionally Stable Anodes) electrodes such as $RuO_2$ and $IrO_2$, which is popular in chlor-alkali process, have been investigated to improve the chlorine generation efficiency. Although DSA electrode has been developed with various researches, understanding of the chlorine evolution mechanism is essential to the development of highly efficient DSA electrode. In this review paper, chlorine generation mechanisms are summarized and that of key factors are identified to systematically understand the chlorine generation mechanism. Rate determining step, effect of pH, reaction intermediate, and electrode crystal structure were intensively overviewed as key factors of the chlorine mechanism.

Characteristics of Time Varying Magnetic Fields in Thyristor Rectifiers of 19kA in Chlor-Alkali Industry

  • Shirmohammadi, Siamak;Suh, Yongsug
    • Proceedings of the KIPE Conference
    • /
    • 2014.07a
    • /
    • pp.383-384
    • /
    • 2014
  • This paper investigates the experimental and simulated time-varying magnetic field generation in a chlor-alkali manufacturing process. 19kA thyristor-based rectifier is modeled and analyzed. The performance is compared and evaluated on the basis of exposure guidelines from ICNIRP. The mechanical structure of current carrying conductor is simplified as an infinite long busbar model and low frequency harmonic contents up to 65kHz are considered. Thyristor rectifier generates a significant amount of low frequency magnetic field harmonic contents both at ac and dc busbar of rectifier infringing the limit of ICNIRP. Along with simulation analysis the experimental measurement of the time-varying magnetic field in ac input busbar, rectifier block, dc load and busbar are presented. The experimental test results partly confirm the simulation results.

  • PDF

An Updated Review of Recent Studies on Dimensionally Stable Anodes (DSA) (불용성 산화 전극(DSA)의 최신 연구 동향)

  • Park, Su-Ryeon;Park, Jin-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.23 no.1
    • /
    • pp.1-10
    • /
    • 2020
  • DSA (Dimensionally Stable Anode) electrodes are physically, thermally and electrochemically stable and are mainly Ti electrodes coated by Ru, Ir and Ta. DSA electrodes have been used in many industrial fields such as chlor-alkali, electrochemical water treatment, water electrolysis, etc. This review paper summarizes the study on the applications using DSA electrodes published in the recent 5 years. It suggests that the researches are intensively required on effective screening of electrodes materials, optimal designing of electrode structures and economical manufacturing of large area electrodes. It is expected that these studies will contribute to the further research and development on advanced DSA electrodes. In addition, the enhancement of DSA electrodes significantly leads to expand the type of the application using electrochemical processes in industry.

Perfluorinated Sulfonic Acid Ionomer Membranes for Valued Chemical Production (과불소계 술폰화 이오노머막을 이용한 고부가가치 화학품 제조)

  • Shim, Jae Goo;Park, In Kee;Lee, Chang Hyun
    • Membrane Journal
    • /
    • v.26 no.2
    • /
    • pp.152-158
    • /
    • 2016
  • The Chlor-alkali (CA) membrane cell is a major electrolysis system to produce valued chemicals such as chlorine gas and sodium hydroxide. The CA membrane process has been attracted in the industries, since it has relatively low energy consumption when compared with other CA processes. The key component in CA process is perfluorinated sulfonic acid ionomer membranes, which provide ion-selectivity and barrier properties to produced gases. Unfortunately, there is limited information to determine which factors should be satisfied for CA applications. In this study, the influences of PFSA membranes on CA performances are disclosed. They include ion transport behaviors, gas evolution capability, and chemical/electrochemical resistances under CA operation conditions.

Sulfonated poly(arylene ether copolymer)-g-sulfonated Polystyrene Membrane Prepared Via E-beam Irradiation and Their Saline Water Electrolysis Application (전자빔조사를 이용한 술폰화 폴리아릴렌 에테르 술폰-g-술폰화 폴리스틸렌 분리막 제조 및 염수전기분해 특성평가)

  • Cha, Woo Ju;Lee, Chang Hyun
    • Membrane Journal
    • /
    • v.26 no.6
    • /
    • pp.458-462
    • /
    • 2016
  • Saline water electrolysis, known as chlor-alkali (CA) membrane process, is an electrochemical process to generate valued chemicals such as chlorine, hydrogen and sodium hydroxide with high purities higher than 99%, using an electrolytic cell composed of cation exchange membrane, anode and cathode. It is necessary to reduce energy consumption per a unit chemical production. This issue can be solved by decreasing intrinsic resistance of the membrane and the electrodes and/or by reducing their interfacial resistance. In this study, the electron radiation grafting of a $Na^+$ ion-selective polymer was conducted onto a hydrocarbon sulfonated ionomer membrane with high chemical resistance. This approach was effective in improving electrochemical efficiency via the synergistic effect of relatively fast $Na^+$ ion conduction and reduced interfacial resistance.

Synthesis of Low Concentration of NaOH Solution using $Na^+$ ion in the Concentrated Water from Membrane Separation Process (분리막 농축수에 포함된 Na를 이용한 저농도 NaOH 용액의 합성)

  • Lee, Yoon-Ji;Park, Youn-Jin;Choi, Jeong-Hak;Shin, Won-Sik;Choi, Sang-June;Chon, Uong
    • Korean Chemical Engineering Research
    • /
    • v.49 no.6
    • /
    • pp.810-815
    • /
    • 2011
  • Concentrated water discharged from seawater desalination process contains a high concentration of $Na^+$ ion. Electrolysis was applied to synthesize NaOH solution from the highly concentrated NaCl solution. The effect of various operating parameters of composited laboratory-scale chlor-alkali (CA) membrane cell was investigated. The operating parameters such as membrane types (CIMS and Nafion membranes), pretreatment of the membrane, flow rate (73 mL/min~200 mL/min), initial $Na^+$ ion concentration (1.5 M, 3M and 5 M) and current (1.5A and 2A) were evaluated. It was observed that synthesis efficiency of NaOH solution with CIMS membrane was higher than that with Nafion membrane, but the durability of CIMS membrane on $Cl_2$ gas was poor. The synthesis efficiency of NaOH solution increased with increasing initial $Na^+$ ion concentration and current, while the efficiency decreased with increasing flow rate using Nafion membrane.

Characteristics of precipitation treatment for Ca and Mg pretreatment of brine generated from MD/RO desalination plant (MD/RO 담수화 플랜트에서 발생한 농축수의 Ca 및 Mg 전처리를 위한 침전 처리 특성)

  • Shim, Jae-Ho;Park, Jae-Chul;Lim, Dae-Hwan;Park, Joo-Yang
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.4
    • /
    • pp.329-338
    • /
    • 2017
  • The problem of disposal of brine due to increased MD/RO desalination plant has recently become a big social issue. The chlor-alkali process through electrolysis of brine has been studied as a method to overcome this problem. In order to increase the electrolysis efficiency, a pretreatment process for removal of hard substances must be preceded. In this study, we investigated the mechanism of removal of hardness through chemical precipitation. As a result, Ca was greatly influenced by addition of $Na_2CO_3$, and Mg was strongly influenced by pH. Also, the addition of NaOH and $Na_2CO_3$ enabled simultaneous removal of Ca and Mg, and showed a removal efficiency of 99.9% or more. Finally, the residual concentrations of Ca and Mg in the brine after the reaction were 0.14 and 0.13 mg/L, respectively. Saturation index was calculated using Visual MINTEQ 3.1, and solid phase analysis of the precipitate was performed by FE-SEM and PXRD analysis. It was confirmed that precipitate formed by the formation of calcite and brucite.