• Title/Summary/Keyword: Chitosan nanoparticles

Search Result 87, Processing Time 0.023 seconds

Preparation of Chitosan/Poly-${\gamma}$-glutamic Acid Nanoparticles and Their Application to Removal of Heavy Metals (키토산/폴리감마글루탐산 나노입자의 제조 및 중금속 제거에의 응용)

  • Sung, Ik-Kyoung;Song, Jae Yong;Kim, Beom Soo
    • Korean Chemical Engineering Research
    • /
    • v.49 no.4
    • /
    • pp.475-479
    • /
    • 2011
  • Chitosan is a natural polymer that has many physicochemical(polycationic, reactive OH and $NH_2$ groups) and biological(bioactive, biocompatible, and biodegradable) properties. In this study, chitosan nanoparticles were prepared using poly-${\gamma}$-glutamic acid(${\gamma}$-PGA) as gelling agent. Nanoparticles were formed by ionic interaction between carboxylic groups in ${\gamma}$-PGA and amino groups in chitosan. Chitosan(0.1~1 g) was dissolved in 100 ml of acetic acid (1% v/v) at room temperature and stirred overnight to ensure a complete solubility. An amount of 0.1 g of ${\gamma}$-PGA was dissolved in 90 ml of distilled water at room temperature. Chitosan solution was dropped through needle into beaker containing ${\gamma}$-PGA solution under gentle stirring at room temperature. The average particle sizes were in the range of 80~300 nm. The prepared chitosan/${\gamma}$-PGA nanoparticles were used to examine their removal of several heavy metal ions($Cd^{2+}$, $Pb^{2+}$, $Zn^{2+}$, $Cu^{2+}$, and $Ni^{2+}$) as adsorbents in aqueous solution. The heavy metal removal capacity of the nanoparticles was in the order of $Cu^{2+}$ > $Pb^{2+}$ > $Cd^{2+}$ > $Ni^{2+}$ > $Zn^{2+}$.

All-trans Retinoic Acid-Associated Low Molecular Weight Water-Soluble Chitosan N anoparticles Based on Ion Complex

  • Kim Dong-Gon;Choi Changyong;Jeong Young-Il;Jang Mi-Kyeong;Nah Jae-Woon;Kang Seong-Koo;Bang Moon-Soo
    • Macromolecular Research
    • /
    • v.14 no.1
    • /
    • pp.66-72
    • /
    • 2006
  • The purpose of this study is to develop novel nanoparticles based on polyion complex formation between low molecular weight water-soluble chitosan (LMWSC) and all-trans retinoic acid (atRA). LMWSC nanoparticles encapsulating atRA based on polyion complex were prepared by mixing of atRA into LMWSC aqueous solution using ultrasonication. In FTIR spectra, the carbonyl group of atRA at 1690 $cm^{-1}$ disappeared or decreased when ion complexes were formed between LMWSC and atRA. In ${1}^H$ NMR spectra, specific peaks of atRA disappeared when atRA-encapsulated LMWSC (RAC) nanoparticles were reconstituted into $D_{2}O$ while specific peaks both of atRA and LMWSC appeared in $D_{2}O$/DMSO (1/3, v/v) mixture. XRD patterns also showed that the crystal peaks of atRA were disappeared by encapsulation into LMWSC nanoparticles. LMWSC nanoparticles encapsulating atRA have spherical shapes with particle size below 200 nm. The mechanism of encapsulation of atRA into LMWSC nanoparticles was thought to be an ion complex formation between LMWSC and atRA. LMWSC nanoparticles showed high atRA loading efficiency over 90$\%$ (w/w). AtRA was continuously released from nanoparticles over 10 days. In in vitro cell cytotoxicity test, free atRA showed higher cytotoxic effect against CT 26 colon carcinoma cell line on 1 day. However, RAC nanoparticles showed similar cytotoxicity against CT 26 cells on 2 day. These results suggest the potential for the introduction of LMWSC nanoparticles into various biomedical fields such as drug delivery.

Research on Thymopentin Loaded Oral N-Trimethyl Chitosan Nanoparticles

  • Yuan, Xiao-Jia;Zhang, Zhi-Rong;Song, Qing-Guo;He, Qin
    • Archives of Pharmacal Research
    • /
    • v.29 no.9
    • /
    • pp.795-799
    • /
    • 2006
  • Peptides, although high efficacy and specificity in their physiological function, usually have low therapeutical activities due to their poor bioavailability when administrated orally. Nanoparticles have been regarded as a useful vector for targeted drug delivery system because they can protect drug from being degraded quickly and pass the gastrointestinal barriers. Here we described a novel oral N-trimethyl chitosan nanoparticles formulation containing thymopentin (Tp5-TMC-NP). N-trimethyl chitosan (TMC) was synthesized and then used to prepare Tp5-TMC-NP by ionotropic gelation. A three-factor, five-level CCD (Central Composite Design) design was used in the optimization procedure, with HPLC as the analyzing method. The resulting Tp5-TMC-NP had a regular spherical surface and a narrow particle size range with a mean diameter of 110.6 nm. The average entrapment efficiency was 78.8%. The lyophilized Tp5-TMC-NP formulation was stable in $4^{\circ}C\;or\;-20^{\circ}C$ after storage of 3 months without obvious changes in morphology, particle size, pH and entrapment ratio. The results of the flow cytometer determination showed that the ratio of $CD4^+/CD8^+$ of Wistar female rat given Tp5-TMC-NP (ig) was 2.59 time that of the group given Tp5 (ig).

Development of Superparamagnetic Iron Oxide Nanoparticles (SPIOs)-Embedded Chitosan Microspheres for Magnetic Resonance (MR)-Traceable Embolotherapy

  • Kang, Myung-Joo;Oh, Il-Young;Choi, Byung-Chul;Kwak, Byung-Kook;Lee, Jae-Hwi;Choi, Young-Wook
    • Biomolecules & Therapeutics
    • /
    • v.17 no.1
    • /
    • pp.98-103
    • /
    • 2009
  • Superparamagnetic iron oxide nanoparticles (SPIOs)-embedded chitosan microspheres were developed for magnetic resonance (MR)-traceable embolotherapy. SPIOs-loaded chitosan microspheres were prepared by emulsion and cross-linking technique and 100-200 ${\mu}m$ sized spherical microsparticles were obtained. Loading efficacy and loading amount of SPIOs in microspheres were about 40% and 0.26-0.32%, respectively, when measured by inductively coupled plasma atomic emission spectroscopy. Within 30 days, about 60% of the incorporated SPIOs were released from low cross-linked microspheres, whereas only about 40% of SPIOs was released from highly cross-linked microspheres. Highly cross-linked microspheres were more efficient for lower degree of swelling leading to secure entrapment of SPIOs in matrix. Prepared novel embolic microspheres are expected to be practically applicable for traceable embolotherapy with high resolution and sensitivity through magnetic resonance imaging (MRI).

Preparation and Characterization of Silica-coated Gold Nanoflowers (AuNFs) with Raman Dye Encoding

  • Yoo, Jihye;Lee, Sang-Wha
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.9
    • /
    • pp.2765-2768
    • /
    • 2014
  • Flower-like Au nanoparticles, so-called Au nanoflowers (AuNFs), were synthesized by simply adding ascorbic acid to a gold acid solution in the presence of a chitosan biopolymer. The chitosan-entangled AuNFs exhibited strong plasmon absorption in the near-infrared (NIR) wavelength due to the aggregation of primary Au nanoparticles. The chitosan-entangled AuNFs were preferentially adsorbed by Raman-active 2-chlorothiophenol (CTP) molecules, and the CTP-encoded AuNFs (AuNF-CTPs) were subsequently coated with a thin silica layer by a sol-gel reaction with Si alkoxides. The silica-coated AuNFs (AuNF-CTPs@silica) exhibited the distinct Raman signals of adsorbed CTP molecules, as a potential nanoprobe with surface-enhanced Raman scattering (SERS).

Preparation of Chitosan-coated Magnetite Nanoparticles (키토산이 피복된 나노 크기의 자성체 분말 제조)

  • Cho, Jun-Hee;Ko, Sang-Gil;Ahn, Yang-Kyu;Song, Ki-Chang;Choi, Eun-Jung
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.1
    • /
    • pp.102-106
    • /
    • 2006
  • Magnetic nanoparticles can be used for a variety of biomedical applications. They can be used in the targeted delivery of therapeutic agents in vivo, in the hyperthermic treatment of cancers. in magnetic resonance (MR) imaging as contrast agents and in the biomagnetic separations of biomolecules. We have synthesized magnetite $(Fe_3O_4)$ nanoparticles using chemical coprecipitation technique with sodium oleate as surfactant. Nanoparticle size can be varied from 2 to 8nm by controlling the sodium oleate concentration. Magnetite phase nanoparticles could be observed from X-ray diffraction. Magnetic colloid suspensions containing particles with sodium oleate and chitosan have been prepared. Nanoparticles, both oleate-coated and chitosan-coated, have been characterized by several techniques. Atomic farce microscope (AFM) was used to image the coated nanoparticles. Magnetic hysteresis measurement were performed using a superconducting quantum interference device (SQUID) magnetometer at room temperature to investigate the magnetic properties of the magnetite nanoparticles. The SQUID measurements revealed superparamagnetism of nanoparticles.

Drug Delivery Effect Using Biopolymer Chitosan Nanoparticles (생명고분자 키토산의 나노입자를 이용한 약물전달 효과)

  • Lee, Do Hun;Lee, Sang-wha;Yoo, In Sang;Park, Kwon-pil;Kang, Ik Joong
    • Applied Chemistry for Engineering
    • /
    • v.16 no.6
    • /
    • pp.790-793
    • /
    • 2005
  • Recently, the interest in the extension of human life and personal health has been increased. Accordingly, many researchers in a pharmacy and a medical world have been making efforts to improve the sustained drug release property and the stability of drug release property in a body. Many biological researches have demonstrated that chitosan derivatives are effective, safe absorption enhancers that can improve the delivery efficiency of drug and vaccine, and they are suitable for controlled drug release because they have good stability, bio-compatibility, and biodegradability. In this study the experiment was performed in vivo by utilizing chitosan nanoparticles as a biopolymer to control drug delivery rate at an optimal temperature, pH, and concentration. It was observed that nanoparticles containing insulin could effectively control the blood glucose at a low level.

Retinoic acid loaded with chitosan nanoparticles improves spermatogenesis in scrotal hyperthermia in mice

  • Fatemeh Mazini;Mohammad-Amin Abdollahifar;Hassan Niknejad;Asma Manzari-Tavakoli;Mohsen Zhaleh;Reza Asadi-Golshan;Ali Ghanbari
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.50 no.4
    • /
    • pp.230-243
    • /
    • 2023
  • Objective: High temperatures can trigger cellular oxidative stress and disrupt spermatogenesis, potentially leading to male infertility. We investigated the effects of retinoic acid (RA), chitosan nanoparticles (CHNPs), and retinoic acid loaded with chitosan nanoparticles (RACHNPs) on spermatogenesis in mice induced by scrotal hyperthermia (Hyp). Methods: Thirty mice (weighing 25 to 30 g) were divided into five experimental groups of six mice each. The groups were as follows: control, Hyp induced by a water bath (43 ℃C for 30 minutes/day for 5 weeks), Hyp+RA (2 mg/kg/day), Hyp+CHNPs (2 mg/kg/72 hours), and Hyp+RACHNPs (4 mg/kg/72 hours). The mice were treated for 35 days. After the experimental treatments, the animals were euthanized. Sperm samples were collected for analysis of sperm parameters, and blood serum was isolated for testosterone measurement. Testis samples were also collected for histopathology assessment, reactive oxygen species (ROS) evaluation, and RNA extraction, which was done to compare the expression levels of the bax, bcl2, p53, Fas, and FasL genes among groups. Additionally, immunohistochemical staining was performed. Results: Treatment with RACHNPs significantly increased stereological parameters such as testicular volume, seminiferous tubule length, and testicular cell count. Additionally, it increased testosterone concentration and improved sperm parameters. We observed significant decreases in ROS production and caspase-3 immunostaining in the RACHNP group. Moreover, the expression levels of bax, p53, Fas, and FasL significantly decreased in the groups treated with RACHNPs and RA. Conclusion: RACHNPs can be considered a potent antioxidative and antiapoptotic agent for therapeutic strategies in reproductive and regenerative medicine.

Characterization and Modification of Low Molecular Water-Soluble Chitosan for Pharmaceutical Application

  • Jang, Mi-Kyeong;Nah, Jae-Woon
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.9
    • /
    • pp.1303-1307
    • /
    • 2003
  • The low molecular water-soluble chitosan nanoparticles (LMWSC-NPs) were prepared, which was modified with hydrophilic and hydrophobic moieties to evaluate the potential for pharmaceutics application. The synthesis of LMWSC-NPs was identified by FT-IR and $^1H$-NMR spectra. Also, we measured the photon correlation spectroscopy (PCS), transmission electron microscope (TEM) and atomic force microscope (AFM) to investigate the characteristics and morphology of the LMWSC-NPs. At the PCS measurement, the more increase the number of substitutive group, the more decrease the positive charge of LMWSC-NP surface. From the results of TEM and AFM, spherical morphologies were observed, and their sizes were 30-150 nm. Resultantly, LMWSC-NPs prepared in this experiment will be expected as a suitable device for the drug targeting system.

Use of Glucose Oxidase Immobilized on Magnetic Chitosan Nanoparticles in Probiotic Drinking Yogurt

  • Ali Afjeh, Maryam Ein;Pourahmad, Rezvan;Akbari-adergani, Behrouz;Azin, Mehrdad
    • Food Science of Animal Resources
    • /
    • v.39 no.1
    • /
    • pp.73-83
    • /
    • 2019
  • The aim of this study was to investigate the effect of glucose oxidase (GOX) immobilized on magnetic chitosan nanoparticles (MCNP) on the viability of probiotic bacteria and the physico-chemical properties of drinking yogurt. Different concentrations (0, 250, and 500 mg/kg) of free and immobilized GOX were used in probiotic drinking yogurt samples. The samples were stored at $4^{\circ}C$ for 21 d. During storage, reduction of the number of probiotic bacteria in the samples with enzyme was lower than the control sample (without enzyme). The sample containing 500 mg/kg immobilized enzyme had the highest number of Bifidobacterium lactis and Lactobacillus acidophilus. The samples containing immobilized enzyme had lower acidity than other samples. Moreover, moderate proteolytic activity and enough contents of flavor compounds were observed in these samples. It can be concluded that use of immobilized GOX is economically more feasible because of improving the viability of probiotic bacteria and the physico-chemical characteristics of drinking yogurt.