• Title/Summary/Keyword: Chitosan nanoparticles

Search Result 87, Processing Time 0.028 seconds

Evaluation of the efficiency of chitosan and silver nanoparticles in the treatment of lice experimental infestation in local chickens

  • Youssef Qasim Mohammed;Sadiya Aziz Anah
    • Korean Journal of Veterinary Research
    • /
    • v.64 no.2
    • /
    • pp.12.1-12.6
    • /
    • 2024
  • The current study aimed to determine the effect of silver and chitosan nanoparticles of size 10 to 30 nm on the dead of lice in vitro and in vivo to determine the optimal time and concentration to combat chicken lice. One hundred local chickens Gallus gallus domesticus were collected from Al-Diwaniyah province and 6 species of local chicken lice were isolated: Menacanthus stramineus, Menacanthus pallidullus, Menacanthus cornutus, Goniodes gigas, Cuclotogaster heterographus and Bonomiella columbae. The results of treating lice with chitosan and silver nanoparticles at concentrations (40, 60, and 80 mg/mL) in vitro and at different periods (5, 10, 15, and 30 minutes) after treatment showed that chitosan and silver nanoparticles at a concentration of 80 mg/mL are the most effective in killing lice. The dead rate of lice reached 100% after 15 minutes of treatment with chitosan nanoparticles and 100% in the case of silver nanoparticles after 30 minutes. The results of spraying chitosan and silver nanoparticles on the body of chickens infected with lice experimentally, based on the relative therapeutic efficacy within 30 minutes, indicated that silver nanoparticles were the most effective in completely killing lice in the group treated with a concentration of 80 mg/kg after 30 minutes, where the percentage of therapeutic efficacy was 96.7%. This was followed by chitosan nanoparticles at a concentration of 80 mg/kg, and the percentage of therapeutic efficiency was 91.5%. Chitosan and silver nanocomposite have a promising effect in the elimination of lice infestation in chickens.

Effect of chitosan and chitosan-nanoparticles on post harvest quality of banana fruits

  • Lustriane, Cita;Dwivany, Fenny M.;Suendo, Veinardi;Reza, Muhammad
    • Journal of Plant Biotechnology
    • /
    • v.45 no.1
    • /
    • pp.36-44
    • /
    • 2018
  • In this study, we evaluated the effect of different concentrations of chitosan and chitosan nanoparticles as edible coating in extending shelf life and maintaining the quality of banana fruits (Musa acuminata AAA group). The fruit treated with 1.15% chitosan, 1.25% chitosan and chitosan nanoparticles then store at ambient temperature ($25{\pm}1^{\circ}C$). The shelf-life of banana, starch content, weight loss, pulp to peel ratio, total soluble solid, surface morpholgy of banana peel and sensory evaluation were analysed. Molecular analysis on the effect of chitosan was also conducted. Results showed that the application of chitosan nanoparticles and chitosan could extend shelf-life and maintain quality of banana fruits.

Synthesis and Characterization of Thermosensitive Nanoparticles Based on PNIPAAm Core and Chitosan Shell Structure

  • Jung, Hyun;Jang, Mi-Kyeong;Nah, Jae-Woon;Kim, Yang-Bae
    • Macromolecular Research
    • /
    • v.17 no.4
    • /
    • pp.265-270
    • /
    • 2009
  • Noble thermosensitive nanoparticles, based on a PNIPAAm-co-AA core and a chitosan shell structure, were designed and synthesized for the controlled release of the loaded drug. PNIPAAm nanoparticles containing a carboxylic group on their surface were synthesized using emulsion polymerization. The carboxylic groups were conjugated with the amino group of a low molecular weight, water soluble chitosan. The particle size of the synthesized nanoparticles was decreased from 380 to 25 nm as the temperature of the dispersed medium was increased. Chitosan-conjugated nanoparticles with $2{\sim}5$ wt% MBA, a crosslinking monomer, induced a stable aqueous dispersion at a concentration of 1mg/1mL. The chitosan-conjugated nanoparticles showed thermo sensitive behaviors such as LCST and size shrinkage that were affected by the PNIPAAm core and induced some particle aggregation around LCST, which was not shown in the NIPAAm-co-AA nanoparticles. These chitosan-conjugated nanoparticles are also expected to be more biocompatible than the PNIPAAm core itself through the chitosan shell structures.

Preparation of Chitosan-coated Magnetite Nanoparticles by Sonochemical Method for MRI Contrast Agent

  • Cho, Jun-Hee;Ko, Sang-Gil;Ahn, Yang-Kyu;Choi, Eun-Jung
    • Journal of Magnetics
    • /
    • v.14 no.3
    • /
    • pp.124-128
    • /
    • 2009
  • Magnetic nanoparticles were synthesized by using the sonochemical method with oleic acid as a surfactant. The average size of the magnetite nanoparticles was controlled by varying the ratio R=[$H_2O$]/[surfactant] in the range of 2 to 9 nm. To prepare chitosan-coated magnetite nanoparticles, chitosan solution was added to a magnetite colloid suspension under ultrasonication at room temperature for 20 min. The chitosan-coated magnetite nanoparticles were characterized by several techniques. Atomic force microscopy (AFM) was used to image the chitosan-coated nanoparticles. Magnetic hysteresis measurement was performed by using a superconducting quantum interference device (SQUID) magnetometer to investigate the magnetic properties of the magnetite nanoparticles and the chitosan-coated magnetite nanoparticles. The SQUID measurements revealed the superparamagnetism of both nanoparticles. The T1- and T2-weighted MR images of these chitosan-coated magnetite colloidal suspensions were obtained with a 4.7 T magnetic resonance imaging (MRI) system. The chitosancoated magnetite colloidal suspensions exhibited enhanced MRI contrasts in vitro.

Preparation and Characterization of Core/Shell-type Ag/Chitosan Nanoparticles with Antibacterial Activity

  • Lin, Yue;Jing, Wang;Kang, Pan;Xiaoming, Zhang;Zhouping, Wang;Wenshui, Xia
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.4
    • /
    • pp.1277-1281
    • /
    • 2011
  • Making use of chitosan (CS) and ethylenediaminetetraacetic acid (EDTA) as a reaction system, CS-EDTA nanoparticles were synthesized through a facile counterion complex coacervation method. $Ag^+$ could enter porous CS nanoparticles synthesized with this method, allowing Ag nanoparticles within chitosan nanoparticles were synthesized by reducing silver nitrate with chitosan. Because of the noncovalent interaction between CS and EDTA, the EDTA could be easily removed via dialysis against water, and pure core/shell-type Ag/CS nanoparticles could be obtained. The nanoparticles showed higher antibacterial activity toward E. coli than the active precursor Ag nanoparticles and CS.

In Vitro Cellular Uptake and Cytotoxicity of Paclitaxel-Loaded Glycol Chitosan Self-Assembled Nanoparticles

  • Park, Ji-Sun;Cho, Yong-Woo
    • Macromolecular Research
    • /
    • v.15 no.6
    • /
    • pp.513-519
    • /
    • 2007
  • Self-assembled nanoparticles have great potential to act as vehicles for hydrophobic drug delivery. Understanding nanoparticle cellular internalization is essential for designing drugs intended for intracellular delivery. Here, the endocytosis and exocytosis of fluorescein isothiocyanate (FITC)-conjugated glycol chitosan (FGC) self-assembled nanoparticles were investigated by flow cytometry and confocal microscopy. The cellular internalization of FGC nanoparticles was initiated by nonspecific interactions between nanoparticles and cell membranes. Although adsorptive endocytosis of the nanoparticles occurred quickly, significant amounts of FGC nanoparticles were exocytosed, particularly in the early stage of endocytosis. The amount of exocytosed nanoparticles was dependent on the pre-incubation time with nanoparticles, suggesting that exocytosis is dependent on the progress of endocytosis. FGC nanoparticles internalized by adsorptive endocytosis were distributed in the cytoplasm, but not in the nucleus. In vitro cell cycle analysis demonstrated that FGC nanoparticles delivered paclitaxel into the cytoplasm and were effective in arresting cancer cell growth.

Chitosan-Iron casein succinylate nanoparticles as oral delivery systems: increasing the stability and enhancing the absorption of iron nanoparticles.

  • Cho, Jung-Hye;Oungbho Kwunchit;Park, Jeong-Sook;Kim, Chong-Kook
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.249.1-249.1
    • /
    • 2003
  • The objective of the study was to develop an oral delivery system to increase the stability and efficacy of iron casein succinylate. Aqueous nanoparticles were prepared using complex coacervation of the oppositely charged chitosan and iron casein succinylate with polyethyleneglycol (PEG). The physicochemical properties of nanoparticles were investigated using dynamic light scattering, zeta potential and scanning electron microscopy. Chitosan-iron casein succinylate interactions were investigated in solid state by differential scanning calorimetry (DSC) and FT-IR spectrometry. (omitted)

  • PDF

Nasal Immunization Using Chitosan Nanoparticles with Glycoprotein B of Murine Cytomegalovirus

  • Marcela Slovakova;Sylva Janovska;Radek Sleha;Vera Radochova;Alexandra Hatala;Nikola Mannova;Radovan Metelka;Ludovit Pudelka;Pavel Bostik
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.3
    • /
    • pp.663-672
    • /
    • 2024
  • The use of nanoparticles as a delivery system for a specific antigen could solve many limitations of mucosal vaccine applications, such as low immunogenicity, or antigen protection and stabilization. In this study, we tested the ability of nasally administered chitosan nanoparticles loaded with glycoprotein B of murine cytomegalovirus to induce an immune response in an animal model. The choice of chitosan nanoparticle type was made by in vitro evaluation of sorption efficiency and antigen release. Three types of chitosan nanoparticles were prepared: crosslinked with tripolyphosphate, coated with hyaluronic acid, and in complex with polycaprolactone. The hydrodynamic size of the nanoparticles by dynamic light scattering, zeta potential, Fourier transform infrared spectroscopy, scanning electron microscopy, stability, loading efficiency, and release kinetics with ovalbumin were evaluated. Balb/c mice were immunized intranasally using the three-dose protocol with nanoparticles, gB, and adjuvants Poly(I:C) and CpG ODN. Subsequently, the humoral and cell-mediated antigen-specific immune response was determined. On the basis of the properties of the tested nanoparticles, the cross-linked nanoparticles were considered optimal for further investigation. The results show that nanoparticles with Poly(I:C) and with gB alone raised IgG antibody levels above the negative control. In the case of mucosal IgA, only gB alone weakly induced the production of IgA antibodies compared to saline-immunized mice. The number of activated cells increased slightly in mice immunized with nanoparticles and gB compared to those immunized with gB alone or to negative control. The results demonstrated that chitosan nanoparticles could have potential in the development of mucosal vaccines.

Preparation and Characterization of Biopolymer-Based Nanocomposite Films: Chitosan-Based Nanocomposite Films with Antimicrobial Activity

  • Rhim, Jong-Whan
    • 한국포장학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.54-73
    • /
    • 2006
  • Four different types of chitosan-based nanocomposite films were prepared using a solvent casting method by incorporating with four types of nanoparticles, i.e., an unmodified montmorillonite (Na-MMT), an organically modified montmorillonite (Cloisite 30B), a Nano-silver, and a Ag-zeolite (Ag-Ion). X-ray diffraction patterns of the nanocomposite films indicated that a certain degree of intercalation was formed in the nanocomposite films, with the highest intercalation in the Na-MMT-incorporated films followed by films with Cloisite 30B and Ag-Ion. SEM micrographs showed that in all the nanocomposite films, except the Nanosilver-incorporated one, nanoparticles were dispersed homogeneously throughout the chitosan polymer matrix. Consequently, mechanical and barrier properties of chitosan films were affected through intercalation of nanoparticles, i.e., tensile strength (TS) increased by 7-16%, while water vapor permeability (WVP) decreased by 25-30% depending on the nanoparticle material tested. In addition, chitosan-based nanocomposite films, especially silver-containing ones, showed a promising range of antimicrobial activity.

  • PDF

Preparation of Magnetic Chitosan Microsphere Particles (나노 크기의 마그네타이트 입자를 이용한 자성 키토산 미소구체의 제조)

  • Ko, Sang-Gil;Cho, Jun-Hee;Ahn, Yang-Kyu;Song, Ki-Chang;Choi, Eun-Jung
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.1
    • /
    • pp.66-70
    • /
    • 2006
  • Magnetite nanoparticles, which have been extensively used in many fields, were encapsulated with a natural polymer, chitosan, to improve their biocompatibility. We have synthesized magnetite $(Fe_3C_4)$ nanoparticles using chemical coprecipitation technique with sodium oleate as surfactant. Nanoparticle size can be varied from 1.2 to 7.4nm by controlling the sodium oleate concentration. Magnetite phase nanoparticles could be observed from X-ray diffraction. Magnetic colloid suspensions containing particles with sodium oleate and chitosan have been prepared. High magnetic property chitosan-microsphere particles were prepared from oleate-coated magnetite suspension using spray method. The surftce, and tile morphology of the magnetic chitosan microsphere particles were characterized using optical microscope and scanning electron microscope. Magnetic hysteresis measurement were performed using a superconducting quantum interference device (SQUID) magnetometer at room temperature to investigate the magnetic properties of the chitosan microspheres including magnetite nanoparticles. The SQUID measurements revealed superparamagnetism of nanoparticles.