• Title/Summary/Keyword: Chitosan membrane

Search Result 135, Processing Time 0.024 seconds

Decolorization of Dyeing Wastewater with Use of Chitosan Materials

  • Xin, Chen;Sun, Hui-Li;Pan, Jia-Hui
    • Ocean Science Journal
    • /
    • v.41 no.4
    • /
    • pp.221-226
    • /
    • 2006
  • More attention has been paid to the research on decolorization of dyeing wastewater nowadays. In this study, an investigation into the decolorization of dyeing wastewater was conducted using a combination of coagulant, carboxymethyl chitosan (NOCC) and coagulant aid, polyscrylamide (PAM). The factors influencing the decolorization efficiency, such as pH value, coagulant and the dosages of coagulant, were discussed. The results showed that using PAM as coagulant aid could reach a high decolorization efficiency compared with using NOCC alone. The optimal conditions were pH 2.3, 480 mg/L for NOCC, and 4-8 mg/L for PAM. Under the optimum conditions, the rate of decolorization could achieve 99%, and the removal of chemical oxygen demand (COD) could achieve 90%. In addition, the membrane processes with chitosan/rare-earth-metals could enhance the decolorization rate of Direct Black FF to 94.7%, and Indanthren Red F3B to 98.2%, respectively.

Biofonctional properties of Chitosan Mcmbrancs Grafted with 2-(methacryloyloxy)-ethyl-2-(trimethylammonium) ethyl phosphate

  • Lee, M.K.;Park, H.S.;Park, S.M.
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1995.04a
    • /
    • pp.46-47
    • /
    • 1995
  • Chitosan, an unbranched (1-4)-linked-2-amino-2-deoxy-$\beta$-D-glucan, is prepared by chemical N-deacetylation of chitin, which is the main structure element of the cuticles of crab, shrimp, and insects, and is found in the cell walls of bacteria. It has the same main chain in its molecule like that of natural heparin. Heparin, an anionic polysaccharide, is the best of anticoagulants that have been found so far. In this study, to improve the blood compatibility of chitosan, 2-(methacrylovloxy)-ethyl-2-(trimethylammonium)ethyl phosphate(MTP) with phospholipid polar groups was grafted on the chitosan membranes and the biochemical properties the MTP-grafted chitosan membranes were investigated.

  • PDF

Controlled Drug Delivery through O-Diethylaminoethyl Chitosan Membrane (O-디에칠아미노에칠 키토산막을 통한 약물방출조절)

  • Kim, Jin-Hong;Lee, Young-Moo
    • Journal of Pharmaceutical Investigation
    • /
    • v.22 no.1
    • /
    • pp.23-31
    • /
    • 1992
  • A novel O-diethylaminoethyl chitosan (DEAE-chitosan) was synthesized via Schiff's reaction between chitosan and benzaldehyde. $C_2$ amino group was protected via Schiffs base reaction with benzaldehyde to form N-benzylidene chitosan. After reaction with diethylaminoethyl chloride, Schiffs base was removed by reacting O-diethylaminothyl-N-benzylidene chitosan and hydrochloric acid. Tensile strength of DEAE-chitosan was improved due to the incorporation of bulky side group in $C_6$ position of chitosan. DEAE-chitosan showed a pH-dependent swelling characteristics. Release rate of riboflavin was dependent on the water content of DEAE-chitosan that is a function of crosslinking degrees.

  • PDF

A comparative study of the clinical effects of chitosan nanofiber membrane in the treatment of mandibular class II furcation defects (하악 2급 치근 이개부 병소에서 키토산 나노 차폐막을 이용한 치주조직 재생의 임상적 효과에 관한 비교 연구)

  • Choi, Han-Sun;Jeong, Lim;Kim, Jeong-Bin;Hong, Ki-Seok;Lim, Sung-Bin;Chung, Chin-Hyung
    • Journal of Periodontal and Implant Science
    • /
    • v.35 no.3
    • /
    • pp.703-718
    • /
    • 2005
  • The purpose of this study was to evaluate the clinical efficacy of guided tissue regeneration(GTR) technique using chitosan nanofiber membrane and to compare it to the clinical efficacy following GTR using PLA/PLGA(copolymer of polvlactic acid and polylacticglycolic acid) membrane in mandibular class II furcation defects in human. The chitosan nanofiber membranes were applied to the mandibular class II furcation defects of 13 patients(test group) and PLA/PLGA membranes were applied to those of 11 patients(control group). Probing pocket depth, clinical attachment level, gingival recession, plaque index and gingival index were measured at baseline and 3 months postoperatively. Vertical and horizontal furcation defect depth were measured at surgery. Both groups were statistically analyzed by Wilcoxon signed Ranks Test and Mann-Whitney Test using SPSS program. The results were as follows: 1. Probing pocket depth, clinical attachment loss and gingival index were significantly reduced at 3 months postoperatively compared to values of baseline in both groups(p<0.05). 2. Gingival recession and plaque index were not significantly decreased at 3 months postoperatively compared to values of baseline in both groups. 3. No significant difference between two groups could be detected with regard to changes of probing pocket depth, gingival recession, clinical attachment level, plaque index and gingival index at 3 months postoperatively. In conclusion, chitosan nanofiber membrane is effective in the treatment of human mandibular class II furcation defects and a longer period study is needed to fully evaluate the outcomes.

Development of Thiourea-Formaldehyde Crosslinked Chitosan Membrane Networks for Separation of Cu (II) and Ni (II) Ions

  • Sudhavani, T.J.;Reddy, N. Sivagangi;Rao, K. Madhusudana;Rao, K.S.V. Krishna;Ramkumar, Jayshree;Reddy, A.V.R.
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.5
    • /
    • pp.1513-1520
    • /
    • 2013
  • Novel chitosan (CS) based membrane networks were developed by solution casting and followed by crosslinking with different crosslinkers such as glutaraldehyde, urea-formaldehyde, and thiourea-formaldehyde. The developed membrane networks were designated as CS-GA, CS-UF and CS-TF. Crosslinking reaction of CS membranes was confirmed by Fourier transform infrared spectroscopy. Membrane rigidity and compactness were studied by the differential scanning calorimetry. The surface morphology of CS membranes was characterized by scanning electron microscopy. The sorption behaviour with respect to contact time, initial pH and initial metal ion concentration were investigated. The maximum adsorption capacity of CS-GA, CS-UF and CS-TF sorbents was found to be 1.03, 1.2 and 1.18 mM/g for $Cu^{2+}$ and 1.48, 1.55 and 2.18 mM/g for $Ni^{2+}$ respectively. Swelling experiments have been performed on the membrane networks at $30^{\circ}C$. Desorption studies were performed in acid media and EDTA and it was found that the membranes are reusable for the metal ion removal for three cycles. The developed membranes could be successfully used for the separation of $Cu^{2+}$ and $Ni^{2+}$ metal ions from aqueous solutions.

Antitumor Activity of Chitosan Oligosaccharides Produced in Ultrafiltration Membrane Reactor System

  • Jeon, You-Jin;Kim, Se-Kwon
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.3
    • /
    • pp.503-507
    • /
    • 2002
  • Chitosan oligosaccharides (COSs) were prepared and fractionated into three groups of COS [a high molecular weight COS (HMWCOS), medium molecular weight COS (LMWCOS), and low molecular weight COS (LMWCOS)] according to their molecular weight, using an ultrafiltration membrane enzymatic bioreactor designed earlier [8]. Antitumor activity of these COSs was then examined against Sarcoma 180 solid (S180) or Uterine cervix carcinoma No. 14 (Ul4) tumor cell-bearing mice. Among these COSs, MMWCOS with molecular weight range from 1.5 to 5.5 kDa effectively inhibited the growth of both tumor cells in the mice. In addition, the administration of MMWCOS resulted in increased thymus weight among lymphoid organs. The mice treated with MMWCOS showed improved survival rate and larger number of survivors after 40 days of feeding. The most effective of MMWCOS far antitumor activity in the S180- or U14-bearing mice was 20 mg/kg/day or more.

Application of Box Wilson experimental design method for removal of acid red 95 using ultrafiltration membrane

  • Akdemir, Ezgi Oktav
    • Membrane and Water Treatment
    • /
    • v.9 no.5
    • /
    • pp.309-315
    • /
    • 2018
  • The applicability of the ultrafiltration process for color removal from dye-containing water has been examined in this study. The optimization of major process variables, such as dye concentration, chitosan concentration and transmembrane pressure on permeate flux and color removal efficiency was investigated. To find the most appropriate results for the experiment, the Box-Wilson experimental design method was employed. The results were correlated by a response function and the coefficients were determined by regression analysis. Permeate flux variation and color removal efficiency determined from the response functions were in good agreement with the experimental results. The optimum conditions of chitosan concentration, dye concentration and pressure were 50 mg/l, 50 mg/l and 3 bars, respectively for the highest permeate flux. On the other hand, optimum conditions for color removal efficiency were determined as 50 mg/l of dye concentration, 50 mg/l of chitosan concentration and 1 bar of pressure.

Preparation and Applicaitons of Synthetic Fish Egg Capsules from Marine Polysaccharides (해양추출 다당류를 이용한 인조어란 캡슐의 제조 및 응용)

  • 이종석;김성구
    • Journal of Life Science
    • /
    • v.6 no.1
    • /
    • pp.34-39
    • /
    • 1996
  • The biopolymer membrane could be formed using marine polysaccharides. Chiotsan and alginate were used for the formation of capsule membrane to mimic the fish eggs such as flying fish eggs and salmon eggs. The size of capsules ranging 1 to 5mm was prepared and the mechanical tests were performed to determine the mechanical similarities to natural fish eggs. The similar mechanical pattern between the synthetic capsules and natural eggs could be found. The controlling parameters for the strength of capsules were pH of the chitosan solution. This encapsulation technique can be broadly applied to medical, engineering as well as food areas.

  • PDF

Antiprotozoal Activity of Deacetylated Chitosan Oligosaccharide (dp 2-8) on Trichomonas vaginalis

  • Shin, Woon-Seob;Kil, Jun-Cheul;Park, Gab-Man
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.12
    • /
    • pp.1984-1989
    • /
    • 2006
  • Deacetylated chitosan oligosaccharide (COS) had effective antiprotozoal activity against Trichomonas vaginalis (Minimal Inhibitory Concentration, MIC 0.25%), whereas 80% acetylated cas showed no antiprotozoal activity (MIC > 1 %). an the other hand, 80% acetylated cas showed growth stimulatory activity against the protozoa. When T. vaginalis was treated with 98% deacetylated COS at 0.25% concentration, the viability of the protozoa was rapidly decreased within 15 min, and the protozoa completely died within 40 min. Ultrastructural changes of trichomonads treated with COS included a loss of defined nuclear membrane and endoplasmic reticulum membranes, an increase in the number of free ribosome, vacuolation, and ultimately lysis of the cell membrane. These results indicate that deacetylated COS can be used as an antitrichomonal agent, although its lethal mechanism is not known.

Dehydration of Alcohol Solutions Through Crosslinked Chitosan Composite Membranes III. Effects of Substrate, Neutralization and Active Layer Thickness on Pervaporation of Water/Ethanol Mixture (가교키토산 복합막을 통한 알콜수용액의 탈수 III. 화학가교시 지지체, 중화에 의한 효과와 이온가교시 활성층두께 변화에 의한 효과)

  • 이영무;남상용;유제강;류경옥
    • Membrane Journal
    • /
    • v.6 no.4
    • /
    • pp.250-257
    • /
    • 1996
  • Surface crosslinked chitosan composite membranes were prepared with glutaraldehyde and surfuric acid. Effects of neutralization for complex between chitosan and acetic acid and of water permeability for substrate membranes on pervaporation performance were investigated. For ionically crosskinked membranes, effect of active layer thickness on separation factor of water/ethanol mixture was studied. With increasing the water permeability of the substrate, the membrane showed an increased separation factor, while it maintained a constant permeate flux. Neutralized chitosan composite membranes revealed a decreased separation factor and a constant permeate flux. When the thickness of the active layer increased, an optimum crosslinking time to achieve higher separation factor shifted to a prolonged times.

  • PDF