• Title/Summary/Keyword: Chitinase

Search Result 342, Processing Time 0.029 seconds

Effectiveness of Various Pseudomonas spp. and Burkholderia caryophylli Containing ACC-Deaminase for Improving Growth and Yield of Wheat (Triticum aestivum L.)

  • Shaharoona, B.;Jamro, G.M.;Zahir, Z.A.;Arshad, M.;Memon, K.S.
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.8
    • /
    • pp.1300-1307
    • /
    • 2007
  • This study assessed the possible role of different traits in selected plant growth-promoting rhizobacteria (PGPR) for improving wheat growth and yield under natural conditions. Rhizobacteria exhibiting 1-aminocyclopropane-1-carboxylate (ACC)-deaminase activity were isolated and screened for their growth-promoting activity in wheat under axenic conditions. Five isolates belonging to Pseudomonas and one Burkholderia caryophylli isolate that showed promising performances under axenic conditions were selected and characterized for in vitro ACC-deaminase activity, chitinase activity, auxin production, P solubilization, and root colonization. These isolates were then used as inocula for wheat cultivated under natural conditions in pot and/or field trials. Significant increases in root elongation, root weight, tillers per pot, 1,000-grain weight, and grain and straw yields were observed in response to inoculation with PGPR in the pot trials. Inoculation with these PGPR was also effective under field conditions and increased the wheat growth and yield significantly. However, the efficacy of the strains was inconsistent under the axenic, pot, and field conditions. Pseudomonas fluorescens ($ACC_{50}$), which exhibited a relatively high in vitro ACC-deaminase activity, chitinase activity, auxin production, and P solubilization and more intensive root colonization, was the most efficient isolate under the field conditions. Therefore, these results demonstrated that ACC-deaminase activity is an efficient parameter for the selection of promising PGPR under axenic conditions. However, additional traits of PGPR, including auxin production, chitinase activity, P solubilization, and root colonization, are also important for selecting PGPR as biofertilizers.

Effect of Acibenzolar-S-methyl and Rahnella aquatilis (Ra39) on Chitinase and β-1, 3-glucanase Activities and Disease Resistance of Apple Plants

  • Abo-Elyousr, A.M. Kamal;Sallam, M.A.A.;Hassan, M.H.A.;Zeller, W.
    • The Plant Pathology Journal
    • /
    • v.26 no.1
    • /
    • pp.63-69
    • /
    • 2010
  • The effect of Acibenzolar-S-methyl (ASM) and Rahnella aquatilis Ra39 against apple fire blight disease caused by Erwinia amylovora were tested as a possible alternative to streptomycin. In vitro studies, no inhibition effect against the pathogen was found when ASM was tested. Under greenhouse conditions, application of R. aquatilis Ra39 with the highly susceptible M26 rootstock resulted in a marked disease suppression. Application of ASM and strain Ra39 caused a high decrease of the disease, 82% and 58% respectively; this was correlated with a reduction of the growth of the pathogen within host plants up to 64% and 49.5% respectively. Further studies in the field under artificial infection condition during full bloom revealed that application of ASM and R. aquatilis Ra39 with Gala variety resulted in a control effect up to 21 and 29% respectively. In physiological studies, enhanced activities of PR-proteins (chitinase and $\beta$-1, 3-glucanase) were detected, which are well known as biochemical markers for systemic acquired resistance. Application of ASM to apple shoots caused the highest chitinase activity followed by strain Ra39. The enzyme activity was increased after 2, 4 and 6 days from application. In addition, ASM-treatment caused the higher $\beta$-1, 3-glucanase activity than strain Ra39. Maximum enzyme activity was recorded after 6 days from application and then decreased after 8 and 10 days from application.

Expression of pqq Genes from Serratia marcescens W1 in Escherichia coli Inhibits the Growth of Phytopathogenic Fungi

  • Kim, Yong-Hwan;Kim, Chul-Hong;Han, Song-Hee;Kang, Beom-Ryong;Cho, Song-Mi;Lee, Myung-Chul;Kim, Young-Cheol
    • The Plant Pathology Journal
    • /
    • v.22 no.4
    • /
    • pp.323-328
    • /
    • 2006
  • Serratia marcescens W1, isolated from cucumber-cultivated soil in Suwon, Korea, evidenced profound antifungal activity and produced the extracellular hydrolytic enzymes, chitinase and protease. In order to isolate the antifungal genes from S. marcescens W1, a cosmid genomic library was constructed and expressed in Escherichia coli. Transformants exhibiting chitinase and protease expression were selected, as well as those transformants evidencing antifungal effects against the rice blast fungus, Magnaporthe grisea, and the cucumber leaf spot fungus, Cercospora citrullina. Cosmid clones expressing chitinase or protease exerted no inhibitory effects against the growth of fungal pathogens. However, two cosmid clones evidencing profound antifungal activities were selected for further characterization. An 8.2 kb HindIII fragment from these clones conditioned the expression of antagonistic activity, and harbored seven predicted complete open reading frames(ORFs) and two incomplete ORFs. The deduced amino acid sequences indicated that six ORFs were highly homologous with genes from S. marcescens generating pyrroloquinoline quinone(PQQ). Only subclones harboring the full set of pqq genes were shown to solubilize insoluble phosphate and inhibit fungal pathogen growth. The results of this study indicate that the functional expression of the pqq genes of S. marcescens W1 in E. coli may be involved in antifungal activity, via as-yet unknown mechanisms.