• Title/Summary/Keyword: Chitin binding activity

Search Result 17, Processing Time 0.023 seconds

Analysis of the Involvement of Chitin-Binding Domain of ChiCW in Antifungal Activity, and Engineering a Novel Chimeric Chitinase with High Enzyme and Antifungal Activities

  • Huang, Chien-Jui;Guo, Shu-Huei;Chung, Shu-Chun;Lin, Yu-Ju;Chen, Chao-Ying
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.10
    • /
    • pp.1169-1175
    • /
    • 2009
  • An antifungal chitinase, ChiCW, produced by Bacillus cereus 28-9 is effective against conidial germination of Botrytis elliptica, the causal agent of lily leaf blight. ChiCW as a modular enzyme consists of a signal peptide, a catalytic domain, a fibronectin type-III-like domain, and a chitin-binding domain. When two C-terminal domains of ChiCW were truncated, $ChiCW{\Delta}FC$ (lacking the chitin-binding domain and fibronectin type III-like domain) lost its antifungal activity. Since $ChiCW{\Delta}C$ (lacking the chitin-binding domain) could not be expressed in Escherichia coli as $ChiCW{\Delta}FC$ did, a different strategy based on protein engineering technology was designed to investigate the involvement of the chitin-binding domain of ChiCW ($ChBD_{ChiCW}$) in antifungal activity in this study. Because ChiA1 of Bacillus circulans WL-12 is a modular enzyme with a higher hydrolytic activity than ChiCW but not inhibitory to conidial germination of Bo. elliptica and the similar domain composition of ChiA1 and ChiCW, the C-terminal truncated derivatives of ChiA1 were generated and used to construct chimeric chitinases with $ChBD_{ChiCW}$. When the chitin-binding domain of ChiA1 was replaced with $ChBD_{ChiCW}$, the chimeric chitinase named ChiAAAW exhibited both high enzyme activity and antifungal activity. The results indicate that $ChBD_{ChiCW}$ may play an important role in the antifungal activity of ChiCW.

Biochemical Properties of a Chitin-Binding Class III Chitinase in Pumpkin Leaves

  • Lee, Kyun-Oh;Kim, Min-Gab;Jang, Ho-Hee;Lee, Ji-Yeun;Kim, Sun-Chang;Lee, Sang-Yeol
    • BMB Reports
    • /
    • v.32 no.6
    • /
    • pp.541-546
    • /
    • 1999
  • When we compared the chitinase activity of various plant sources using colorimetric or active gel-staining assay methods, the specific activity of pumpkin leaves was the highest among the samples we analyzed. The highly active chitinase from pumpkin leaves (designated PL-ChtIII) was purified to homogeneity using affinity chitin gel and HPLC Mono-Q anion-exchange cloumn chromatographies. In contrast to other members of the class III chitinase family, PL-ChtIII showed a strong binding affinity to the regenerated chitin gel column. The apparent molecular weight of PL-ChtIII was estimated to be 29 kDa on SDS-PAGE gel, while its optimum pH and temperature were shown to be pH 6.0 and $60^{\circ}C$, respectively. Analyzing the reaction products of PL-ChtIII with swollen chitin as substrate, the dimer and tetramer of N-acetylglucosamine were produced as major products in the first hour of the enzymatic reaction along with a small amount of monomers and trimers. As the reaction time increased, dimeric N-acetylglucosamine became the predominant form of reaction product.

  • PDF

Functions of the C-Terminal Region of Chitinase ChiCW from Bacillus cereus 28-9 in Substrate-Binding and Hydrolysis of Chitin

  • Huang, Chien-Jui;Chen, Chao-Ying
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.12
    • /
    • pp.1897-1903
    • /
    • 2006
  • In order to investigate the functions of the C-terminal region of chitinase ChiCW of Bacillus cereus 28-9, a C-terminal truncated enzyme, ChiCW$\Delta$FC, was expressed in Escherichia coli and purified to homogeneity for biochemical characterization. Compared with ChiCW, ChiCW$\Delta$FC exhibited higher chitinase activity at high temperature and pH, but expressed lower hydrolytic and binding activities toward insoluble substrates. In addition, kinetic properties indicated that ChiCW$\Delta$MC hydrolyzed oligomeric and polymeric substrates less efficiently than ChiCW. These results suggest that the C-terminal region of ChiCW plays important roles in substrate binding and hydrolysis of chitin. In addition, the biological meaning of C-terminal proteolytic modification of ChiCW is discussed.

Carboxy-terminus truncations of Bacillus licheniformis SK-1 CHI72 with distinct substrate specificity

  • Kudan, Sanya;Kuttiyawong, Kamontip;Pichyangkura, Rath
    • BMB Reports
    • /
    • v.44 no.6
    • /
    • pp.375-380
    • /
    • 2011
  • Bacillus licheniformis SK-1 naturally produces chitinase 72 (CHI72) with two truncation derivatives at the C-terminus, one with deletion of the chitin binding domain (ChBD), and the other with deletions of both fibronectin type III domain (FnIIID) and ChBD. We constructed deletions mutants of CHI72 with deletion of ChBD (CHI72${\Delta}$ChBD) and deletions of both FnIIID and ChBD (CHI72${\Delta}$FnIIID${\Delta}$ChBD), and studied their activity on soluble, amorphous and crystalline substrates. Interestingly, when equivalent amount of specific activity of each enzyme on soluble substrate was used, the product yield from CHI72-${\Delta}$ChBD and CHI72${\Delta}$FnIIID${\Delta}$ChBD on colloidal chitin was 2.5 and 1.6 fold higher than CHI72, respectively. In contrast, the product yield from CHI72${\Delta}$ChBD and CHI72${\Delta}$FnIIID-${\Delta}$ChBD on ${\beta}$-chitin reduced to 0.7 and 0.5 fold of CHI72, respectively. These results suggest that CHI72 can modulate its substrate specificities through truncations of the functional domains at the C-terminus, producing a mixture of enzymes with elevated efficiency of hydrolysis.

Enhancement of chitinolytic activity of by co-expression of endochitinase and chitobiosidase genes (Endochitinase와 Chitobiosidase 유전자의 동시발현에 의한 키틴분해 활성의 증가)

  • Kim, Jungtae;Choi, Shin-Geon
    • Journal of Industrial Technology
    • /
    • v.30 no.B
    • /
    • pp.69-74
    • /
    • 2010
  • Chitinolytic activity was enhanced by coexpression of endo-chitinase gene (chiA) and chitobiosidase gene (chiB) from Serratia marcescens KFRI314 using constitutive expression vector, pHCEIA, in E. coli. Coexpression vector was constructed by inserting ribosome binding site (RBS) into junction between two chitinase genes. SDS-PAGE analyses showed that two chitinase were constitutively expressed while E. coli clones expressing two chitinases simultaneously increased halo size on colloidal chitin plate. Furthermore, the chitinolytic activities were much enhanced in coexpressed clones when degradation patterns of substrate analogues such as 4-MU-(NAG), $4-MU-(NAG)_2$,$4-MU-(NAG)_3$ were used. Consequently, the combined use of endochitinase and chitobiosidase greatly increased overall chitinolytic activities on recombinant E. coli clones.

  • PDF

Aucklandia lappa Causes Cell Wall Damage in Candida albicans by Reducing Chitin and (1,3)-β-D-Glucan

  • Lee, Heung-Shick;Kim, Younhee
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.7
    • /
    • pp.967-973
    • /
    • 2020
  • The fungal cell wall is a major target of antifungals. In this study, we report the antifungal activity of an ethanol extract from Aucklandia lappa against Candida albicans. We found that the extract caused cell wall injury by decreasing chitin synthesis or assembly and (1,3)-β-D-glucan synthesis. A sorbitol protection assay demonstrated that the minimum inhibitory concentration (MIC) of the A. lappa extract against C. albicans cells increased eight-fold from 0.78 to 6.24 mg/ml in 72 h. Cell aggregates, which indicate damage to the cell wall or membrane, were commonly observed in the A. lappatreated C. albicans cells through microscopic analysis. In addition, the relative fluorescence intensities of the C. albicans cells incubated with the A. lappa extract for 3, 5, and 6 h were 92.1, 84.6, and 79.8%, respectively, compared to the controls, estimated by Calcofluor White binding assay. This result indicates that chitin content was reduced by the A. lappa treatment. Furthermore, synthesis of (1,3)-β-D-glucan polymers was inhibited to 84.3, 79.7, and 70.2% of that of the control treatment following incubation of C. albicans microsomes with the A. lappa extract at a final concentration equal to its MIC, 2× MIC, and 4× MIC, respectively. These findings suggest that the A. lappa ethanol extract may aid the development of a new antifungal to successfully control Candidaassociated disease.

Gamma Radiation Induced Mutagenesis of Lysobacter enzymogenes for Enhanced Chitinolytic Activity

  • Lee, Young-Keun;Kim, Kyoung Youl;Senthilkumar, M.
    • Journal of Radiation Industry
    • /
    • v.4 no.1
    • /
    • pp.65-71
    • /
    • 2010
  • Two chitinase producing strains CHI2 and CHI4 were isolated from soybean rhizosphere soil. Both the strains belonged to Lysobacter enzymogenes as indicated by 16S rDNA sequence analysis. Though strain CHI2 and CHI4 produced extracellular chitinase, they differ in their chitinolytic activity. CHI4 produced approximately three times the higher amounts of enzyme than that of CHI2 under specified conditions. CHI2 produced $535.67U\;l^{-1}$ of chitinase after 48 h incubation with a specific activity of $3.91U\;mg^{-1}$ of protein while strain CHI4 produced $1584.13U\;l^{-1}$ of chitinase with a specific activity of $10.88U\;mg^{-1}$ protein. SDS-PAGE analysis indicated that the molecular weight of chitinase enzyme was approximately 45 kDa. A faint band with a molecular weight of 55 kDa reveals the possibility for the presence of another kind of chitin binding protein. Mutant library was developed by exposing the isolates to gamma rays at their $LD_{99}$ value (0.23 kGy). Totally, 11 mutants of CHI2 and CHI4 are reported to have enhanced chitinase activity. Several leaky mutant clones with decreased enzyme activity and a defective mutant (CHI2-M16) with complete loss of chitinase activity were also identified. CHI4-M18, CHI4-M8 and CHI4-M29 showed 78.8, 41.5, and 31.9% increased chitinase activity over wild type CHI4.

Chitinase from an Antarctic Bacterium, Sanguibacter sp. KCTC10714

  • Lee, Hong-Kum
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2006.05a
    • /
    • pp.97-99
    • /
    • 2006
  • A chitinase-producing bacterium strain KCTC10714 was isolated from sea sand around the King Sejong Station, King George Island in Antarctica. It was identified as Sanguibacter sp., based on the biochemical properties and 16S rRNA gene sequence. KCTC10714 chitinase showed enzyme activity in broad range of temperature from 0 to $70^{\circ}C$. At $0^{\circ}C$, it showed 70.9% of relative activity in comparison with 100%. The chitinase gene of KCTC10714 was cloned using inverse PCR cloning method. KCTC10714 chitinase gene was designated as chi21702. The ORF of chi21702 consisted of 1,449 bp (482 amino acid), and contained ChtBD3 (a chitin/cellulose binding domain) and an active site for chitinase family 18.

  • PDF

Antifungal Activity and Biochemical Characterization of Lectin Isolated from Locular Fluid of Cherry Tomato Fruit (방울토마토 열매 locular fluid lectin의 항균성과 생화학적 특성)

  • Roh, Kwang-Soo
    • KSBB Journal
    • /
    • v.25 no.3
    • /
    • pp.289-296
    • /
    • 2010
  • Lectins are carbohydrate-binding and a cell-agglutinating proteins, and are concerted with a plants defence mechanism. In particular, chitin-binding lectins in locular fluid of cherry tomato fruit seemed to have a role in defending plants against fungi. The antifungal activity using lectin isolated from locular fluid of cherry tomato fruit was measured in the plant pathogen Cladosporium cucumerinum, Monosporascus cannonballus, Fusarium oxysporum, and Rhizoctonia solani. Amoung the four strains, a potent antifungal activity was detected in Cladosporium cucumerinum and Monosporascus cannonballus, not in Fusarium oxysporum, and Rhizoctonia solani. The molecular weight of this lectin isolated as double protein bands by SDS-PAGE was calculated to be 87 kDa and 47 kDa from the relative mobilities compared with those of reference molecular weight markers. The isolated lectin agglutinated human red blood cells (A, B, AB, O) treated with trypsin, and the most activity was found at B. The optimal temperature of isolated lectin was at $30^{\circ}C$. For the thermal stability, lectin was stable at $20-80^{\circ}C$. The optimal pH of this lectin was at 7.2, and showed complete loss below pH 9.0.