• Title/Summary/Keyword: Chirp

Search Result 285, Processing Time 0.03 seconds

Matching Pursuit Approach for Guided Wave-Based Damage Inspection (유도 초음파 이용 결함 진단을 위한 정합추적 기법)

  • Hong, Jin-Chul;Sun, Kyung-Ho;Kim, Yoon-Young
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.615-618
    • /
    • 2004
  • For successful guided-wave damage inspection, the appropriate signal processing of measured wave signals is very important. The objective of this paper is to introduce an efficient signal processing technique especially suitable for the guided-waves used for damage detection. The key idea of this technique is to model guided-waves by chirp functions of special form considering the dispersion phenomenon. To determine the parameter of the chirp functions simulating guided-waves, the matching pursuit algorithm is employed. The damage information in waveguides can be extracted by pulse-characterizing parameters. The effectiveness of present method is checked with the longitudinal wave-based damage inspection.

  • PDF

Theoretical Study of the Effect of Pulse Chirping on Polarization Mode Dispersion and Polarization-Dependent Loss

  • Yoon, Il-Yong;Lee, Yong-Wook;Lee, Byoung-Ho
    • Journal of the Optical Society of Korea
    • /
    • v.7 no.2
    • /
    • pp.59-63
    • /
    • 2003
  • We accomplished numerical simulations for two-uniform-fiber concatenation with both polarization mode dispersion (PMD) and polarization-dependent loss (PDL) . The effective overall PMD is increased with the chirp parameter and the effective overall PDL is decreased with the chirp parameter. For PDL, chirping just makes the signal bandwidth wider, so makes the pulse be more depolarized than a chirp-free pulse. We showed that PDL increases the frequency dependence of the principal states of polarization, and the combination of this dependency and the bandwidth broadening by chirping can affect the effective PDL.

Seabed Classification Using the K-L (Karhunen-Lo$\grave{e}$ve) Transform of Chirp Acoustic Profiling Data: An Effective Approach to Geoacoustic Modeling (광역주파수 음향반사자료의 K-L 변환을 이용한 해저면 분류: 지질음향 모델링을 위한 유용한 방법)

  • Chang, Jae-Kyeong;Kim, Han-Joon;Jou, Hyeong-Tae;Suk, Bong-Chool;Park, Gun-Tae;Yoo, Hai-Soo;Yang, Sung-Jin
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.3 no.3
    • /
    • pp.158-164
    • /
    • 1998
  • We introduce a statistical scheme to classify seabed from acoustic profiling data acquired using Chirp sonar system. The classification is based on grouping of signal traces by similarity index, which is computed using the K-L (Karhunen-Lo$\grave{e}$ve) transform of the Chirp profiling data. The similarity index represents the degree of coherence of bottom-reflected signals in consecutive traces, hence indicating the acoustic roughness of the seabed. The results of this study show that similarity index is a function of homogeneity, grain size of sediments and bottom hardness. The similarity index ranges from 0 to 1 for various types of seabed material. It increases in accordance with the homogeneity and softness of bottom sediments, whereas it is inversely proportional to the grain size of sediments. As a real data example, we classified the seabed off Cheju Island, Korea based on the similarity index and compared the result with side-scan sonar data and sediment samples. The comparison shows that the classification of seabed by the similarity index is in good agreement with the real sedimentary facies and can delineate acoustic response of the seabed in more detail. Therefore, this study presents an effective method for geoacoustic modeling to classify the seafloor directly from acoustic data.

  • PDF

Modulation Characteristics of Coupled-Ring Reflector Laser Diode (Coupled-Ring Reflector 레이저 다이오드의 변조 특성)

  • Yun, Pil-Hwan;Kim, Su-Hyeon;Jeong, Yeong-Cheol
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2006.07a
    • /
    • pp.315-316
    • /
    • 2006
  • The modulation bandwidth, wavelength chirp of directly modulated coupled-ring reflector laser diode have been investigated using time-domain modeling. For a specific design, the modulation frequency could be 6 GHz and the frequency chirp could be in the range of $120^{\sim}200$ MHz/mA.

  • PDF

The geophysical survey in shallow water and transitional region

  • Ashida Yuzuru
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2002.09a
    • /
    • pp.1-15
    • /
    • 2002
  • In the present paper, the marine reflection seismic survey, the survey using Chirp sonar, the detail topographic survey by narrow multi-beam sounding machine, the sea bottom geological condition survey by side-scan sonar, the sea bottom sampling by core sampler and the positioning by DGPS as the geophysical survey in shallow and transitional region are introduced by placing emphasis on hardware configuration.

  • PDF

Gas Hydrate Occurrence in the Southwestern Slope of the Ulleung Basin, East Sea, Inferred from Seismic Evidence (동해 울릉분지 남서 사면지역에서 탄성파 특징으로부터 유추한 가스 수화물의 존재 가능성)

  • Hong, Jong-Kuk;Yoo, Hai-Soo;Jou, Hyeong-Tae;Han, Sang-Joon;Choi, Dong-Lim
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.6 no.4
    • /
    • pp.242-248
    • /
    • 2001
  • A high resolution Chirp seismic profile and a multichannel seismic reflection profile were analysed to study the possibility of gas hydrate presence in the southwestern upper slope of the Ulleung Basin. The Chirp profile shows acoustic turbidity, acoustic void, and pockmarks, suggesting the presence of shallow gas in the sediments .Slope failures appear to have occurred in association with decomposition of gas hydrated sediments. A bottom-simulating reflector (BSR) is seen in subbottom depths of 60 to 110 m below the seafloor at water depths of 750 to 1130 m. The sediments above BSR are characterized by acoustic blanking probably due to amplitude reduction caused by a mixture of gas hydrate with sediments. The interval velocity above the BSR is 1,650 m/sec and it drops abruptly to 1,080 m/sec below the BSR. The sediment column between seafloor and the BSR thins with increasing water depth, which is very closely related to increasing geothermal gradient with increasing water depth in the Ulleung Basin.

  • PDF

Inverse Synthetic Aperture Radar Imaging Using Stepped Chirp Waveform (계단 첩 파형(Stepped Chirp Waveform)을 이용한 ISAR 영상 형성)

  • Lee, Seong-Hyeon;Kang, Min-Suk;Park, Sang-Hong;Shin, Seung-Yong;Yang, Eunjung;Kim, Kyung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.9
    • /
    • pp.930-937
    • /
    • 2014
  • Inverse synthetic aperture radar (ISAR) images can be generated by radar which radiates the electromagnetic wave to a target and receives signal reflected from the target. ISAR images can be widely used to target detection and recognition. This paper proposed a method of generation of high resolution ISAR images by synthesizing frequency spectrums of each stepped chirp waveform in one burst and sub-sampling in frequency domain. This process is performed over entire bursts during coherent processing interval. Conventional ISAR image generation method using stepped frequency waveform has a severe problem of short unambiguous range, loading to ghost phenomenon. However, this problem can be resolved by the proposed method. In simulations, we generate high resolution ISAR image of the moving target which is Boeing-737 aircraft model composed of several ideal point scatterers.

IRF performance prediction by analyzing of amplitude and phase errors for the wideband Chirp signal (광대역 첩 신호의 진폭 및 위상오차 분석을 통한 IRF 성능 분석)

  • Kim, Dong-Sik;Kim, Jong-Pil;Lee, Jong-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.2
    • /
    • pp.131-138
    • /
    • 2016
  • In this paper, we studied the IRF performances of the chirp signal used in the SAR system. The most important factors that degrade IRF performances are amplitude and phase errors. Each factor can be represented to linear, quadratic, random and ripple terms. That can be extracted by a quadratic polynomial curve fitting of chirp waveform. We analyzed the IRF performances by the error terms and supposed the minimum value of RF non-linearity to meet the specification of the PSLR and ISLR.

A Self-Calibrated Localization System using Chirp Spread Spectrum in a Wireless Sensor Network

  • Kim, Seong-Joong;Park, Dong-Joo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.2
    • /
    • pp.253-270
    • /
    • 2013
  • To achieve accurate localization information, complex algorithms that have high computational complexity are usually implemented. In addition, many of these algorithms have been developed to overcome several limitations, e.g., obstruction interference in multi-path and non-line-of-sight (NLOS) environments. However, localization systems those have complex design experience latency when operating multiple mobile nodes occupying various channels and try to compensate for inaccurate distance values. To operate multiple mobile nodes concurrently, we propose a localization system with both low complexity and high accuracy and that is based on a chirp spread spectrum (CSS) radio. The proposed localization system is composed of accurate ranging values that are analyzed by simple linear regression that utilizes a Big-$O(n^2)$ of only a few data points and an algorithm with a self-calibration feature. The performance of the proposed localization system is verified by means of actual experiments. The results show a mean error of about 1 m and multiple mobile node operation in a $100{\times}35m^2$ environment under NLOS condition.