• Title/Summary/Keyword: Chiral amine

Search Result 24, Processing Time 0.02 seconds

Enantiodiscrimination and molecular docking study of chiral amines as 2-hydroxynaphthaldimine derivatives using amylose derived chiral selectors

  • Suraj Adhikari;Inhee Kang;Swapnil Bhujbal;Wonjae Lee
    • Analytical Science and Technology
    • /
    • v.37 no.5
    • /
    • pp.306-314
    • /
    • 2024
  • This study describes the liquid chromatographic enantiomer separation of three typical chiral amines (α-methylbenzylamine, 2-amino-4-methyl-1-pentanol, and 1-methylheptylamine) as 2-hydroxynaphthaldimine derivatives using six amylose trisphenylcarbamates derived chiral stationary phases (CSPs). It was observed that the structural nature of three chiral amines and the structures of amylose chiral selectors can affect their chiral recognition ability. Among the three analytes as 2-hydroxynaphthaldimine derivatives, in general, the greatest enantioselectivities of aromatic amine analyte (α-methylbenzylamine) were achieved on amylose trisphenylcarbamate derived CSPs and were followed by amino alcohol analyte (2-amino-4-methyl-1-pentanol), and aliphatic amine analyte (1-methylheptylamine). Also, the enantiodiscrimination abilities obtained on the two CSPs, Chiralpak ID and Chiralpak IF, were selectively higher than the other four amylose trisphenylcarbamate derived CSPs for the studied analytes. The underlying chiral recognition mechanism between 2-amino-4-methyl-1-pentanol as 2-hydroxynaphthaldimine derivatives and amylose tris(3,5-dimethylphenylcarbamate) chiral selector of Chiralpak AD-H and Lux Amylose-1 was elucidated by molecular docking study, and it was observed that the intermolecular hydrogen bonding interactions by hydroxyl moiety on the amino alcohol analyte as 2-hydroxynaphthaldimine derivatives were the main interactive forces driving the chiral separation. The obtained binding energies between 2-amino-4-methyl-1-pentanol analyte as 2-hydroxynaphthaldimine derivative and amylose tris(3,5-dimethylphenylcarbamate) chiral selector were in agreement with the experimentally determined enantioseparation and elution order by chiral HPLC.

Chiral Molecular Recognition by Alkoxy-amine-aluminum Derivatives (Alkoxy-amine-aluminum 유도체에 의한 키랄 분자 인식)

  • Kim, Jong-Mi
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.12 no.3
    • /
    • pp.143-147
    • /
    • 2009
  • The enantioselective reduction of representative prochiral alkyl-aryl ketones with a new chiral alkoxy-amine-aluminum derivatives from aluminum hydride and ${\alpha},{\alpha}$-diphenyl-${\beta}$-amino alcohols, such as (S)-(-)-2-amino-3-methyl-1,1-diphenylbutan-1-ol(AMDPB) and (S)-(-)-2-(diphenylhydroxy-methyl)pyrrolidine(DPHMP), in THF at $0^{\circ}C$ was studied. In the reduction of alkoxy-amine-aluminum derivatives, acetophenone, propiophenone, isopropiophenone, and butyrophenone are reduced to corresponding aromatic secoundary alcohols with 34~60 % enantiomeric excess of (S)-isomers. For such ketones, the optical induction was enhanced by increasing a size of alkyl groups.

  • PDF

Prediction on the Chiral Behaviors of Drugs with Amine Moiety on the Chiral Cellobiohydrolase Stationary Phase Using a Partial Least Square Method

  • Choi, Sun-Ok;Lee, Seok-Ho;Park Choo , Hea-Young
    • Archives of Pharmacal Research
    • /
    • v.27 no.10
    • /
    • pp.1009-1015
    • /
    • 2004
  • Quantitative Structure-Resolution Relationship (QSRR) using the Comparative Molecular Field Analysis (CoMFA) software was applied to predict the chromatographic behaviors of chiral drugs with an amine moiety on the chiral cellobiohydrolase (CBH) columns. As a result of the Quantitative CoMFA-Resolution Relationship study, using the partial least square method, prediction of the behavior of drugs with amine moiety upon chiral separation became possible from their three dimensional molecular structures. When a mixed mobile phase of 10 mM aqueous phosphate buffer (pH 7.0) - isopropanol (95 : 5) was employed, the best Quantitative CoMFA-Resolution Relationship, derived from the study, provided a cross-validated $q^2$ = 0.933, a normal $r^2$ = 0.995, while the best Quantitative CoMFA-Separation Factor Relationship, also derived from the study, yielded a cross-validated $q^2$ = 0.939, a normal $r^2$ = 0.991. When all of these results are considered, this QSRR-CoMFA analysis appears to be a very useful tool for the preliminary prediction on the chromatographic behaviors of drugs with an amine moiety inside chiral CBH columns.

Simple and Efficient Method for the Enantiomeric discrimination of Racemates (라세미 화합물의 거울상 이성질체 구분을 위한 간단하고 효과적인 방법)

  • Ho Sik Rho
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.49 no.2
    • /
    • pp.141-146
    • /
    • 2023
  • The efficient use of a chiral shift agent (3) containing bifunctional group (thiourea and tertiary amine) for the determination of the enantiomeric purity of racemic mixture (Hemiesters) has been studied. The diastereomeric complexes derived from a chiral shift agent (3) with various hemiesters gave rise to well separate signals of the methoxy protons of hemiesters. Good splitting signals for enantiomers of hemiesters in 1H NMR are originated form the hydrogen bonds between carbonyl groups of hemiester and bifunctional groups of a chiral shift agent (3) such as thiourea moiety and tertiary amine. This study provides a quick and simple way to determine the chiral purity of hemiester using chiral transfer agent (3).

Effect of Mobile Phase Additive on Enantiomer Resolution for Chiral Amines on Polysaccharide-derived Chiral Stationary Phases by High Performance Liquid Chromatography (고성능 액체크로마토그래피의 다당유도체를 기초로 한 키랄 고정상에서 이동상 첨가제가 키랄 아민의 광학분리에 미치는 영향)

  • Paik, Man-Jeong;Yoon, Hye-Ran;Lee, Wonjae
    • KSBB Journal
    • /
    • v.29 no.3
    • /
    • pp.205-209
    • /
    • 2014
  • Chromatographic enantiomer resolution of chiral amines was performed on several covalently immobilized and coated chiral stationary phases (CSPs) based on polysaccharide derivatives under the mobile phase conditions containing base or acid or acid/base additive. The chromatographic parameters including separation factors and capacity factors were greatly influenced by the nature of the mobile phase containing base or acid or salt additive as well as the used CSPs. When 0.05% triethylamine/0.05% trifluoroacetic acid as an additive in the mobile phase was used on all CSPs in this study, the greatest enantiomer resolution was observed except for Chiralpak AD. Also, it was shown that the change of base additive into acid or salt in the mobile phase may directly affect chiral recognition mechanisms between the chiral selectors and analytes occurring during enantiomer separation, resulting in the change of elution orders.

A Direct Comparison Study of Asymmetric Borane Reduction of C=N Double Bond Mediated by Chiral Oxazaborolidines

  • Cho Byung Tae;Ryu, Mi Hae;Chun Yu Sung;Dauelsberg Ch.;Wallbaum Sabine;Martens Jurgen
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.1
    • /
    • pp.53-57
    • /
    • 1994
  • A comparison study on asymmetric borane reduction of ketoxime ethers and N-substituted ketimines possesing C = N double bond mediated by the selected chiral oxazaborolidines (1-6) was investigated. Thus, an aromatic ketoxime O-alkyl ether acetophenone oxime O-methyl ether was reduced to the corresponding amine (1-phenylethylamine 8a) with optical yields, such as 58% ee with 1, 86% ee with 2, 3% ee with 3, 99% ee with 4, 60% ee with 5, and 73% ee with 6. However, the reduction of an aliphatic ketoxime derivative 2-heptanone oxime O-methyl ether provided low optical inductions (7-13% ee). For ketoxime O-trimethylsilyl ethers, the reduction of acetophenone O-trimethylsilyl ether afforded 8a with optical yields which were 90% ee with 1, 40% ee with 2, 2% ee with 3, 62% ee with 4, 5% ee with 5, and 60% ee with 6. The reduction of 2-heptanone O-trimethylsilyl ether also gave the product amine with low optical yields (10-40% ee). In the case of N-substituted ketimines, the reduction of acetophenone N-phenylimine afforded the corresponding amine with 79% ee, 78% ee, 9% ee, 73% ee, 78% ee and 67% ee using 1, 2, 3, 4, 5, and 6, respectively, whereas low optical inductions (5-18% ee) for 2-heptanone N-phenylimine were achieved.