• Title/Summary/Keyword: Chip-packaging

Search Result 480, Processing Time 0.026 seconds

Practical Packaging Technology for Microfluidic Systems (미소유체시스템을 위한 실용적인 패키징 기술)

  • Lee, Hwan-Yong;Han, Song-I;Han, Ki-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.3
    • /
    • pp.251-258
    • /
    • 2010
  • This paper presents the technology for the design, fabrication, and characterization of a microfluidic system interface (MSI); the purpose of this technology is to enable the integration of complex microfluidic systems. The MSI technology can be applied in a simple manner for realizing complex arrangements of microfluidic interconnects, integrated microvalves for fluid control, and optical windows for on-chip optical processes. A microfluidic system for the preparation of genetic samples was used as the test vehicle to prove the effectiveness of the MSI technology for packaging complex microfluidic systems with multiple functionalities. The miniaturized genetic sample preparation system comprised several functional compartments, including compartments for cell purification, cell separation, cell lysis, solid-phase DNA extraction, polymerase chain reaction, and capillary electrophoresis. Additionally, the functional operation of the solid-phase extraction and PCR thermocycling compartments was demonstrated by using the MSI.

Elastic Properties and Repeated Deformation Reliabilities of Stiffness-Gradient Stretchable Electronic Packages (강성도 경사형 신축 전자패키지의 탄성특성 및 반복변형 신뢰성)

  • Han, Kee Sun;Oh, Tae Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.4
    • /
    • pp.55-62
    • /
    • 2019
  • Stiffness-gradient stretchable electronic packages of the soft PDMS/hard PDMS/FPCB structure were processed using the polydimethylsiloxane (PDMS) as the base substrate and the more stiff flexible printed circuit board (FPCB) as the island substrate. The elastic characteristics of the stretchable packages were estimated and their long-term reliabilities on stretching cycles and bending cycles were characterized. With 0.28 MPa, 1.74 MPa, and 1.85 GPa as the elastic moduli of the soft PDMS, hard PDMS, and FPCB, respectively, the effective elastic modulus of the soft PDMS/hard PDMS/FPCB package was estimated as 0.6 MPa. The resistance of the stretchable packages varied for 2.8~4.3% with stretching cycles ranging at 0~0.3 strain up to 15,000 cycles and for 0.9~1.5% with 15,000 bending cycles at a bending radius of 25 mm.

A Study of Warpage Analysis According to Influence Factors in FOWLP Structure (FOWLP 구조의 영향 인자에 따른 휨 현상 해석 연구)

  • Jung, Cheong-Ha;Seo, Won;Kim, Gu-Sung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.4
    • /
    • pp.42-45
    • /
    • 2018
  • As The semiconductor decrease from 10 nanometer to 7 nanometer, It is suggested that "More than Moore" is needed to follow Moore's Law, which has been a guide for the semiconductor industry. Fan-Out Wafer Level Package(FOWLP) is considered as the key to "More than Moore" to lead the next generation in semiconductors, and the reasons are as follows. the fan-out WLP does not require a substrate, unlike conventional wire bonding and flip-chip bonding packages. As a result, the thickness of the package reduces, and the interconnection becomes shorter. It is easy to increase the number of I / Os and apply it to the multi-layered 3D package. However, FOWLP has many issues that need to be resolved in order for mass production to become feasible. One of the most critical problem is the warpage problem in a process. Due to the nature of the FOWLP structure, the RDL is wired to multiple layers. The warpage problem arises when a new RDL layer is created. It occurs because the solder ball reflow process is exposed to high temperatures for long periods of time, which may cause cracks inside the package. For this reason, we have studied warpage in the FOWLP structure using commercial simulation software through the implementation of the reflow process. Simulation was performed to reproduce the experiment of products of molding compound company. Young's modulus and poisson's ratio were found to be influenced by the order of influence of the factors affecting the distortion. We confirmed that the lower young's modulus and poisson's ratio, the lower warpage.

Heat Dissipation Trends in Semiconductors and Electronic Packaging (반도체 및 전자패키지의 방열기술 동향)

  • S.H. Moon;K.S. Choi;Y.S. Eom;H.G. Yun;J.H. Joo;G.M. Choi;J.H. Shin
    • Electronics and Telecommunications Trends
    • /
    • v.38 no.6
    • /
    • pp.41-51
    • /
    • 2023
  • Heat dissipation technology for semiconductors and electronic packaging has a substantial impact on performance and lifespan, but efficient heat dissipation is currently facing limited improvement. Owing to the high integration density in electronic packaging, heat dissipation components must become thinner and increase their performance. Therefore, heat dissipation materials are being devised considering conductive heat transfer, carbon-based directional thermal conductivity improvements, functional heat dissipation composite materials with added fillers, and liquid-metal thermal interface materials. Additionally, in heat dissipation structure design, 3D printing-based complex heat dissipation fins, packages that expand the heat dissipation area, chip embedded structures that minimize contact thermal resistance, differential scanning calorimetry structures, and through-silicon-via technologies and their replacement technologies are being actively developed. Regarding dry cooling using single-phase and phase-change heat transfer, technologies for improving the vapor chamber performance and structural diversification are being investigated along with the miniaturization of heat pipes and high-performance capillary wicks. Meanwhile, in wet cooling with high heat flux, technologies for designing and manufacturing miniaturized flow paths, heat dissipating materials within flow paths, increasing heat dissipation area, and reducing pressure drops are being developed. We also analyze the development of direct cooling and immersion cooling technologies, which are gradually expanding to achieve near-junction cooling.

TDX-10 전자교환기의 열설계

  • Park, Jong-Hyeong;Song, Gyu-Seop;Heo, Jun-Yeong;Im, Ye-Seop
    • ETRI Journal
    • /
    • v.10 no.3
    • /
    • pp.157-164
    • /
    • 1988
  • In proportion to the increased density in electronic packaging from chip to system levels of telecommunication system, thermal management is becoming a vital subject to save the cost of the electronic product and to maintain high reliability. The key to the successful application of the thermal management technique is the capability to predict the equipment thermal behaviors in early stage of system development and product design. This paper describes the application of correlations of natural convection to TDX-10 digital switching system, which has been under the 5 year development project since 1987, in order to predict equipment temperature and thermal behaviors whihin a rack.

  • PDF

Diode Temperature Sensor Array for Measuring and Controlling Micro Scale Surface Temperature (미소구조물의 표면온도 측정 및 제어를 위한 다이오드 온도 센서 어레이 설계)

  • Han, Il-Young;Kim, Sung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1231-1235
    • /
    • 2004
  • The needs of micro scale thermal detecting technique are increasing in biology and chemical industry. For example, Thermal finger print, Micro PCR(polymer chain reaction), ${\mu}TAS$ and so on. To satisfy these needs, we developed a DTSA(Diode Temperature Sensor Array) for detecting and controlling the temperature on small surface. The DTSA is fabricated by using VLSI technique. It consists of 32 ${\times}$ 32 array of diodes (1,024 diodes) for temperature detection and 8 heaters for temperature control on a 8mm ${\times}$ 8mm surface area. The working principle of temperature detection is that the forward voltage drop across a silicon diode is approximately proportional to the inverse of the absolute temperature of diode. And eight heaters ($1K{\Omega}$) made of poly-silicon are added onto a silicon wafer and controlled individually to maintain a uniform temperature distribution across the DTSA. Flip chip packaging used for easy connection of the DTSA. The circuitry for scanning and controlling DTSA are also developed

  • PDF

The Life Span of LED by the Rising Glass Transitions Temperature of Epoxy (에폭시 유리전이 온도상승에 따른 LED 수명의 변화)

  • Ban, Jae-Sam;Jung, Yong-Ho;Yang, Hyun-Sam;Kim, Sun-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.1
    • /
    • pp.109-113
    • /
    • 2012
  • The LED failure rate greatly depends on the physical properties of packaging materials (epoxy). The glass transitions temperature (Tg) of the epoxy is one of the most important physical properties. Therefore, in the present study, various epoxies with high Tg were prepared and their failure shapes were analyzed. In addition, the failure shapes depending on the amount of epoxy and the wire bonding structure were measured. As a consequence, the lower failure rate was obtained with the smaller amount of epoxy. The safety of LED was improved with increasing the Tg of the epoxy.

Surface Analysis of Aluminum Bonding Pads in Flash Memory Multichip Packaging

  • Son, Dong Ju;Hong, Sang Jeen
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.4
    • /
    • pp.221-225
    • /
    • 2014
  • Although gold wire bonding techniques have already matured in semiconductor manufacturing, weakly bonded wires in semiconductor chip assembly can jeopardize the reliability of the final product. In this paper, weakly bonded or failed aluminum bonding pads are analyzed using X-ray photoelectron spectroscopy (XPS), Auger electron Spectroscopy (AES), and energy dispersive X-ray analysis (EDX) to investigate potential contaminants on the bond pad. We found the source of contaminants is related to the dry etching process in the previous manufacturing step, and fluorocarbon plasma etching of a passivation layer showed meaningful evidence of the formation of fluorinated by-products of $AlF_x$ on the bond pads. Surface analysis of the contaminated aluminum layer revealed the presence of fluorinated compounds $AlOF_x$, $Al(OF)_x$, $Al(OH)_x$, and $CF_x$.

Pressure Sensor Packaging for Non-invasive Pulse Wave Measurement (비침습적 맥파 측정을 위한 압력센서 패키징에 관한 연구)

  • Kim, Eun-Geun;Nam, Ki-Chang;Heo, Hyun;Huh, Young
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1978.1_1979.1
    • /
    • 2009
  • In this paper, we have proposed and demonstrated a tonometry sensor array for measuring arterial pulse pressure. A sensor module consists of 7 piezoresistive pressure sensor array. Wire-bonded connection was provided between silicon chip and lead frame. PDMS(poly-dimethylsiloxane) was coated on the sensor array to protect fragile sensor while faithfully transmitting the pressure of radial artery to the sensor. Tonometric pulse pressure can be measured by this packaged sensor array that provides the pressure value versus the output voltage.

  • PDF

A Study on Characteristics of Angular Rate Sensor using Real Vehicle (실차 적용을 통한 각속도센서 특성 연구)

  • Kim, Byeong-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.7
    • /
    • pp.1218-1223
    • /
    • 2007
  • A surface micro machined angular rate sensor utilizing a vibrating MEMS structure on a silicon has been developed. These tuning fork angular rate sensors are extremely rugged, inherently balanced, and easy to fabricate. The device is fabricated using a temperature compensation method based on automatic gain control technique. A linearity of approximately 0.6%, limited by the on-chip electronics has been obtained with this new sensor. Tests of the sensor demonstrate that its performance is equivalent to that required for implementation of a yaw control system. Vehicle handling and safety are substantially improved using the sensor to implement yaw control.