• Title/Summary/Keyword: Chip load

Search Result 225, Processing Time 0.033 seconds

Design of a Thermal Energy Harvesting Circuit With MPPT Control (MPPT 기능을 갖는 열전 에너지 하베스팅 회로)

  • Kim, Su-jin;Park, Kum-young;Yoon, Eun-jung;Oh, Won-seok;Yu, chong-gun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.255-258
    • /
    • 2012
  • In this paper, with a thermoelectric device using the seebeck effect which generates electromotive force by temperature difference generates electric energy an energy harvesting circuit using MPPT(Maximun Power Point Traking) control is designed. After periodically sampling the open voltage of the thermoelectric device, the 1/2 voltage of open voltage which in a maximum power point is maintained through MPPT control circuit and harvested energy from thermoelectric device is delivered to load through a switch. The proposed thermal energy harvesting circuit is designed with $0.35{\mu}m$ CMOS process and the chip area excluding pads is $1168.7{\mu}m{\times}541.3{\mu}m$.

  • PDF

Microcomputer-based Data Acquisition System for the Measurements of Temperature and Weight in Food Processing (마이크로 컴퓨터를 이용한 식품가공(食品加工) 공정중(工程中)의 온도및 무게 측정용(測定用) Analog-digital 변환(變換)및 접속(接續) 시스템의 제작(製作))

  • Choi, Boo-Dol;Chun, Jae-Kun
    • Korean Journal of Food Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.129-133
    • /
    • 1987
  • To develop a microcomputer-based data acquisition system for measurement of variables such as temperature and weight in food process, a low-cost data acquisition system was developed using an Apple II microcomputer. The system consisted of a microcomputer, a temperature sensor made of pt-100, a strain gauge load cell for weighing, a preamplifier for signal conditionings and an interface device. Interface device was built with programmable interface chip MC 6821, tristate buffer 74244 and analog-to-digital converter ADC 0809. The analog signals of temperature and weight were serially acquisited upon the program. The BASIC language was used for operating the data acquisition and data handling programs. The system successfully measured the variables such as temperature and weight with various sampling intervals in food dehydration process.

  • PDF

Photovoltaic Generation System Design for Controlling the Temperature and Humidity of Hospital (병원내 온도와 습도조절을 위한 태양광 발전 시스템 설계)

  • Cho, Moon-Taek;Lee, Chung-Sik;Baek, Jong-Mu
    • Journal of the Korean Society of Radiology
    • /
    • v.5 no.3
    • /
    • pp.127-134
    • /
    • 2011
  • In this paper we propose an improved PV generation systems. Improved systems for temperature and humidity controlled heating and air conditioning offers a pleasant environment within the building, set up chopper and consists of a PWM voltage type inverter. The proposed system is stable modulation for a one-chip microprocessor using the synchronous signal and control signals was treated. The proposed system is a PWM voltage type inverter and phase of the synchronous to the grid voltage to detect the system voltage and inverter output to drive the statue, so surplus power to connection was able to, certain buildings such as buildings or hospitals, temperature and humidity sensor is applied to the good dynamic characteristic could be obtained. In addition, the system was applied to the high power factor and low-frequency harmonics by maintaining the output load and grid to power to be supplied to a stable control could get a good result.

Design of the DC-DC Buck Converter for Mobile Application Using PWM/PFM Mode (PWM/PFM 모드를 이용한 모바일용 벅 변환기 설계)

  • Park, Li-Min;Jung, Hak-Jin;Yoo, Tai-Kyung;Yoon, Kwang-Sub
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.11B
    • /
    • pp.1667-1675
    • /
    • 2010
  • This paper presents a high efficiency DC-DC buck converter for mobile device. The circuit employes simplified compensation circuit for its portability and for high efficiency at stand-by mode. This device operates at PFM mode when it enters stand-by mode(light load). In order to place the compensation circuit on chip, the capacitor multiplier method is employed, such that it can minimize the compensation block size of the error amplifier down to 30%. The measurement results show that the buck converter provides a peak efficiency of 93% on PWM mode, and 92.3% on PFM mode. The converter has been fabricated with a $0.35{\mu}m$ CMOS technology. The input voltage of the buck converter ranges from 2.5V to 3.3V and it generates the output of 3.3V.

Design and Implementation of FPGA-based High Speed Multimedia Data Reassembly Processor (FPGA 기반의 고속 멀티미디어 데이터 재조합 프로세서 설계 및 구현)

  • Kim, Won-Ho
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.9 no.3
    • /
    • pp.213-218
    • /
    • 2008
  • This paper describes hardware-based high speed multimedia data reassembly processor for remote multimedia Set-Top-Box(MSTB) of interactive satellite multimedia communication system. The conventional multimedia data reassembly scheme is based on software processing of MSTB. As increasing of transmission rate for multimedia data services, the CPU load of remote MSTB is increased and reassembly performance of MSTB is limited. To provide high speed multimedia data service to end user, we proposed hardware based high speed multimedia data reassembly processor. It is implemented by using an FPGA, a PCI interface chip, and RAMs. And it is integrated in MSTB and tested. It has been confirmed to meet required all functions and processing rate up to 116Mbps.

  • PDF

2~16 GHz GaN Nonuniform Distributed Power Amplifier MMIC (2~16 GHz GaN 비균일 분산 전력증폭기 MMIC)

  • Bae, Kyung-Tae;Lee, Ik-Joon;Kang, Hyun-Seok;Kim, Dong-Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.11
    • /
    • pp.1019-1022
    • /
    • 2016
  • In this paper, a 2~16 GHz GaN wideband power amplifier MMIC s designed and fabricated using the nonuniform power amplifier design technique that utilizes drain shunt capacitors to simultaneously provide each transistor with the optimum load impedance and phase balance between input and output transmission lines. The power amplifier MMIC chip that is fabricated using the $0.25{\mu}m$ GaN HEMT foundry process of Win Semiconductors occupies an area of $3.9mm{\times}3.1mm$ and shows a linear gain of larger than 12 dB and an input return loss of greater than 10 dB. Under a continuous-wave mode, it has a saturated output power of 36.2~38.5 dBm and a power-added efficiency of about 8~16 % in 2 to 16 GHz.

A Low-voltage Vibration Energy Harvesting System with MPPT Control (MPPT 제어 기능을 갖는 저전압 진동 에너지 하베스팅 시스템)

  • An, Hyun-jeong;Kim, Ye-chan;Hong, Ye-jin;Yang, Min-Jae;Yoon, Eun-jung;Yu, Chong-gun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.477-480
    • /
    • 2015
  • In this paper a low-voltage vibration energy harvesting circuit with MPPT(Maximum Power Point Tracking) control is proposed. By employing bulk-driven technique, the minimum operating voltage of the proposed circuit is as low as 0.8V. The designed MPPT control circuit traces the maximum power point by periodically sampling the open circuit voltage of a full-wave rectifier circuit connected to the piezoelectric device output and delivers the maximum available power to load. The proposed circuit is designed using a $0.35{\mu}m\;CMOS$ process, and the chip area including pads is $1.33mm{\times}1.31mm$. Simulation results show that the maximum power efficiency of the designed circuit is 85.49%.

  • PDF

DC-DC Boost Converter with Dead-Time Adaptive Control and Power Switching (Dead-Time 적응제어 기능과 Power Switching 기능을 갖는 DC-DC 부스트 변환기)

  • Lee, Joo-young;Yang, Min-jae;Kim, Doo-Hoi;Yoon, Eun-jung;Yu, Chong-gun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.361-364
    • /
    • 2013
  • Since the non-overlapping gate driver used in conventional DC-DC boost converters generates fixed dead-times, the converters suffer from the body-diode conduction loss or the charge-sharing loss. A adaptive control method has been proposed to reduce these loses. In this method, however, occurrence of and overlapping time of two power transistors in CCM results in reduction of efficiency. In this paper, to overcome this problem a new adaptive control method in proposed, and a DC-DC boost converter with the proposed adaptive control and power switching has been designed in a 0.35um CMOS process. The designed converter outputs 3.3V from a input voltage of 2.5V. The switching frequency is 500kHz and the maximum power efficiency is 95.3% at a load current 150mA. The designed chip area is $1720um{\times}1280um$.

  • PDF

A CMOS Interface Circuit with MPPT Control for Vibrational Energy Harvesting (진동에너지 수확을 위한 MPPT 제어 기능을 갖는 CMOS 인터페이스 회로)

  • Yang, Min-jae;Yoon, Eun-jung;Yu, Chong-gun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.412-415
    • /
    • 2015
  • This paper presents a MPPT(Maximum Power Point Tracking) control CMOS interface circuit for vibration energy harvesting. The proposed circuit consists of an AC-DC converter, MPPT Controller, DC-DC boost converter and PMU(Power Management Unit). The AC-DC converter rectifies the AC signals from vibration devices(PZT). MPPT controller is employed to harvest the maximum power from the PZT and increase efficiency of overall system. The DC-DC boost converter generates a boosted and regulated output at a predefined level and provides energy to load using PMU. A full-wave rectifier using active diodes is used as the AC-DC converter for high efficiency, and a schottky diode type DC-DC boost converter is used for a simple control circuitry. The proposed circuit has been designed in a 0.35um CMOS process. The chip area is $950um{\times}920um$.

  • PDF

A Solar Energy Harvesting Circuit with Low-Cost MPPT Control for Low Duty-Cycled Sensor Nodes. (낮은 듀티 동작의 센서 노드를 위한 저비용 MPPT 제어기능을 갖는 빛에너지 하베스팅 회로)

  • Yoon, Eun-Jung;Yang, Min-Jae;Yu, Chong-Gun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.397-400
    • /
    • 2015
  • In this paper a solar energy harvesting system with low-cost MPPT control for low duty-cycled sensor nodes is proposed. The targeted applications are environment, structure monitoring sensor nodes that are not required successively to operate, and MPPT(Maximum Power point Tracking) control using simple circuits is low-cost differently than existing MPPT control. The proposed MPPT control is implemented using linear relationship between the open-circuit voltage of a solar cell. The designed MPPT circuit traces the maximum power point by sampling periodically the open circuit voltage of the solar cell and delivers the maximum available power to the load. The proposed circuit is designed in 0.35um CMOS process. The designed chip area is $975um{\times}1025um$ including pads. Measured results show that the designed system can track the MPP voltage by sampling periodically the open circuit voltage of solar cell.

  • PDF