• Title/Summary/Keyword: Chip integration

Search Result 202, Processing Time 0.029 seconds

Fabrication of Porous Cu Layers on Cu Pillars through Formation of Brass Layers and Selective Zn Etching, and Cu-to-Cu Flip-chip Bonding (황동층의 형성과 선택적 아연 에칭을 통한 구리 필라 상 다공성 구리층의 제조와 구리-구리 플립칩 접합)

  • Wan-Geun Lee;Kwang-Seong Choi;Yong-Sung Eom;Jong-Hyun Lee
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.4
    • /
    • pp.98-104
    • /
    • 2023
  • The feasibility of an efficient process proposed for Cu-Cu flip-chip bonding was evaluated by forming a porous Cu layer on Cu pillar and conducting thermo-compression sinter-bonding after the infiltration of a reducing agent. The porous Cu layers on Cu pillars were manufactured through a three-step process of Zn plating-heat treatment-Zn selective etching. The average thickness of the formed porous Cu layer was approximately 2.3 ㎛. The flip-chip bonding was accomplished after infiltrating reducing solvent into porous Cu layer and pre-heating, and the layers were finally conducted into sintered joints through thermo-compression. With reduction behavior of Cu oxides and suppression of additional oxidation by the solvent, the porous Cu layer densified to thickness of approximately 1.1 ㎛ during the thermo-compression, and the Cu-Cu flip-chip bonding was eventually completed. As a result, a shear strength of approximately 11.2 MPa could be achieved after the bonding for 5 min under a pressure of 10 MPa at 300 ℃ in air. Because that was a result of partial bonding by only about 50% of the pillars, it was anticipated that a shear strength of 20 MPa or more could easily be obtained if all the pillars were induced to bond through process optimization.

Genome Detection Using an Integrated type DNA Chip Microelectrode-array and Non-labeling Target DNA (집적형 DNA칩 미소 전극 어레이 및 비수식화 표적 DNA를 이용한 유전자 검출)

  • Choi, Yong-Sung;Lee, Hea-Yeon;Tanaka, Hiroyuki;Tanaka, Hidekafu;Kwon, Young-Soo;Kawai, Tomoii
    • Proceedings of the KIEE Conference
    • /
    • 2001.11a
    • /
    • pp.274-276
    • /
    • 2001
  • This research aims to develop the multiple channel electrochemical DNA chip using microfabrication technology. At first, we fabricated a high integration type DNA chip array by lithography technology. Several probe DNAs consisting of thiol group at their 5-end were immobilized on the sold electrodes. Then target DNAs were hybridized and reacted. Cyclic voltammetry showed a difference between target DNA and control DNA in the anodic peak current values. Therefore, it is able to detect a plural genes electrochemically after immobilization of a plural probe DNA and hybridization of non-labeling target DNA on the electrodes simultaneously. It suggested that this DNA chip could recognize the sequence specific genes.

  • PDF

The Chip Bonding Technology on Flexible Substrate by Using Micro Lead-free Solder Bump (플렉서블 기반 미세 무연솔더 범프를 이용한 칩 접합 공정 기술)

  • Kim, Min-Su;Ko, Yong-Ho;Bang, Jung-Hwan;Lee, Chang-Woo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.19 no.3
    • /
    • pp.15-20
    • /
    • 2012
  • In electronics industry, the coming electronic devices will be expected to be high integration and convergence electronics. And also, it will be expected that the coming electronics will be flexible, bendable and wearable electronics. Therefore, the demands and interests of bonding technology between flexible substrate and chip for mobile electronics, e-paper etc. have been increased because of weight and flexibility of flexible substrate. Considering fine pitch for high density and thermal damage of flexible substrate during bonding process, the micro solder bump technology for high density and low temperature bonding process for reducing thermal damage will be required. In this study, we researched on bonding technology of chip and flexible substrate by using 25um Cu pillar bumps and Sn-Bi solder bumps were formed by electroplating. From the our study, we suggest technology on Cu pillar bump formation, Sn-Bi solder bump formation, and bonding process of chip and flexible substrate for the coming electronics.

Micro-bump Joining Technology for 3 Dimensional Chip Stacking (반도체 3차원 칩 적층을 위한 미세 범프 조이닝 기술)

  • Ko, Young-Ki;Ko, Yong-Ho;Lee, Chang-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.10
    • /
    • pp.865-871
    • /
    • 2014
  • Paradigm shift to 3-D chip stacking in electronic packaging has induced a lot of integration challenges due to the reduction in wafer thickness and pitch size. This study presents a hybrid bonding technology by self-alignment effect in order to improve the flip chip bonding accuracy with ultra-thin wafer. Optimization of Cu pillar bump formation and evaluation of various factors on self-alignment effect was performed. As a result, highly-improved bonding accuracy of thin wafer with a $50{\mu}m$ of thickness was achieved without solder bridging or bump misalignment by applying reflow process after thermo-compression bonding process. Reflow process caused the inherently-misaligned micro-bump to be aligned due to the interface tension between Si die and solder bump. Control of solder bump volume with respect to the chip dimension was the critical factor for self-alignment effect. This study indicated that bump design for 3D packaging could be tuned for the improvement of micro-bonding quality.

A Study on the Detection of Cutter Runout Magnitude in Milling (밀링가공에서의 커더 런 아웃량 검출에 관한 연구)

  • Hwang, J.;Chung, E. S.;Lee, K. Y.;Shin, S. C.;Nam-Gung, S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.151-156
    • /
    • 1995
  • This paper presents a methodology for real-time detecting and identifying the runout geometry of an end mill. Cutter runout is a common but undesirable phenomenon in multi-tooth machining such as end-milling process because it introduces variable chip loading to insert which results in a accelerated tool wear,amplification of force variation and hence enlargement vibration amplitude. Form understanding of chip load change kinematics, the analytical sutting force model was formulated as the angular domain convolution of three dynamic cutting force component functions. By virtue of the convolution integration property, the frequency domain expression of the total cutting forces can be given as the algebraic multiplication of the Fourier transforms of the local cutting forces and the chip width density of the cutter. Experimental study are presented to validata the analytical model. This study provides the in-process monitoring and compensation of dynamic cutter runout to improve machining tolerance tolerance and surface quality for industriql application.

  • PDF

Manufacturing of PAR Illumination Using COB Line Type LEDs (COB Line형 LED를 사용한 PAR 조명의 제작)

  • Youn, Gap-Suck;Yoo, Kyung-Sun;Lee, Chang-Soo;Hyun, Dong-Hoon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.4
    • /
    • pp.448-454
    • /
    • 2015
  • In this paper, the band structural design that is typically in a line was arranged in a ring shape, so as to configure the high power LED lighting in such a way as to form a concentrated light distribution angle of less than 15 degrees. The parabolic aluminized reflector PAR38 that facilitates design using area and the area of the optical system to the same extent, applied a multiple light-source condenser lens optical system for the control of integration. The LED used here implemented a single linear light source using ans LED module with ans LED, flip-chip chip-scale package. The optical system was designed based on the energy star standard.

A design of Encoder Hardware Chip For H.264 (H.264 Encoder Hardware Chip설계)

  • Kim, Jong-Chul;Suh, Ki-Bum
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.100-103
    • /
    • 2008
  • In this paper, we propose H.264 Encoder integrating Intra Prediction, Deblocking filter, Context-Based Adaptive Variable Length Coding, and Motion Estimation encoder module. This designed module can be operated in 440 cycle for one-macroblock. To verify the Encoder architecture, we developed the reference C from JM 9.4 and verified the our developed hardware using test vector generated by reference C. The designed circuit can be operated in 166MHz clock system, and has 1800k gate counts using Charterd 0.18um process including SRAM memory. Manufactured chip has the size of $6{\times}6mm$ and 208 pins package.

  • PDF

A design of Encoder Hardware Chip For H.264 (H.264 Encoder Hardware Chip설계)

  • Suh, Ki-Bum
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.12
    • /
    • pp.2647-2654
    • /
    • 2009
  • In this paper, we propose H.264 Encoder integrating Intra Prediction, Deblocking Filter, Context-Based Adaptive Variable Length Coding, and Motion Estimation encoder module. This designed module can be operated in 440 cycle for one-macroblock. To verify the Encoder architecture, we developed the reference C from JM 9.4 and verified the our developed hardware using test vector generated by reference C. The designed circuit can be operated in 166MHz clock system, and has 1800K gate counts using Charterd 0.18 um process including SRAM memory. Manufactured chip has the size of $6{\times}6mm$ and 208 pins package.

Design of Programmable Baseband Filter for Direct Conversion (Direct Conversion 방식용 프로그래머블 Baseband 필터 설계)

  • Kim, Byoung-Wook;Shin, Sei-Ra;Choi, Seok-Woo
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.1
    • /
    • pp.49-57
    • /
    • 2007
  • Recently, CMOS RF integration has been widely explored in the wireless communication area to save cost, power, and chip area. The direct conversion architecture, rather than a more conventional super-het-erodyne, has been an attractive choice for single-chip integration because of its many advantages. However, the direct conversion architecture has several fundamental problems to solve in achieving performance comparable to a super-heterodyne counterpart. In this paper, we describe a programmable filter for mobile communication terminals using a direct conversion architecture. The proposed filter can be implemented with the active-RC filter and programmed to meet the requirements of different communication standards, including GSM, DECT and WCDMA. The filter can be tuned to select a detail frequency by changing the gate voltage of the MOS resistors. The gain of the proposed architecture can be programmed from 27dB to 72dB using the filter gain and VGA in 3dB steps.

  • PDF

A Capacitance Deviation-to-Time Interval Converter Based on Ramp-Integration and Its Application to a Digital Humidity Controller (램프-적분을 이용한 용량치-시간차 변환기 및 디지털 습도 조절기에의 응용)

  • Park, Ji-Mann;Chung, Won-Sup
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.12
    • /
    • pp.70-78
    • /
    • 2000
  • A novel capacitance deviation-to-time interval converter based on ramp-integration is presented. It consists of two current mirrors, two schmitt triggers, and control digital circuits by the upper and lower sides, symmetrically. Total circuit has been with discrete components. The results show that the proposed converter has a linearity error of less than 1% at the time interval(pulse width) over a capacitance deviation from 295 pF to 375 pF. A capacitance deviation of 40pF and time interval of 0.2 ms was measured for sensor capacitance of 335 pF. Therefore, the high-resolution can be known by counting the fast and stable clock pulses gated into a counter for time interval. The application of a novel capacitance deviation-to time interval converter to a digital humidity controller is also presented. The presented circuit is insensitive to the capacitance difference in disregard of voltage source or temperature deviation. Besides the accuracy, it features the small MOS device count integrable onto a small chip area. The circuit is thus particularly suitable for the on-chip interface.

  • PDF