• Title/Summary/Keyword: Chip flow angle

Search Result 26, Processing Time 0.022 seconds

A Study On Prediction Of Three Dimensional Cutting Forces According To The Cutting Conditions (3차원 절삭가공시 절삭력 예측에 관한 연구)

  • 신근하
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1995.03a
    • /
    • pp.152-157
    • /
    • 1995
  • In Turning It is good selection of cutting condition and cutting tools that influence upon the accuracy of dimension manufacturing efficiency and extension of tool life. Among them especially the identification of cutting force due to the change of cutting conditions which exerts a great influence on the turning is very important. In this study the cutting resistance due to the change of cutting conditions was caculated by using the energy method and good agreement in shown between theoritical and experimental results which were tested for the cutting resistance at the cemented carbide cutting tools with workpieces of SM20C and SM 45C.

  • PDF

An Analytic Approach for Cutting Forces in Milling Process (밀링가공에서의 절삭력에 대한 해석적 연구)

  • 김국원;김남웅
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.270-273
    • /
    • 2002
  • This paper presents an effective cutting force model that enable us to predict the instantaneous cutting force in milling process from a knowledge of the work material properties and cutting conditions. The development of the model is based on the orthogonal machining theory with the effective rake angle which is defined in the plane containing the cutting velocity and chip flow vectors. Face milling tests are performed at different feeds and, a fairly good agreement is shown between the predicted cutting forces and test results.

  • PDF

Machinability Evaluation according to Variation of Endmill Shape for High Speed Machining (고속가공용 엔드밀 형상변화에 따른 가공성 평가)

  • Kang, Myung-Chang;Kim, Jeong-Suk;Lee, Deuk-Woo;Kim, Kwang-Ho;Ha, Dong-Geun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.5
    • /
    • pp.133-138
    • /
    • 2002
  • The technique of high speed machining is widely studied in machining fields, because the high efficiency and accuracy in machining can be obtained in high speed machining. Unfortunately the development of tool fur high speed machining in not close behind that of machine tool. In this study, 10 types flat endmill is prepared for obtaining data according to tool shape. Especially, we concentrated in helix angle, number of cutting edge and rake angle. Cutting condition is selected for several experiments and measuring cutting farce, tool life, tool wear and chip shape according to cutting length. 3-axis cutting farces are acquired from the tool dynamometer with high natural frequency, as the conventional tool dynamometer (9257B, Kistler) has cannot measure the state of high frequency force. Particularly, we found out that the axial cutting force waveform has a good relation with tool wear features. And flow is interrupted at the beginning of cutting by the decrease of rake angle. By above results. it is suggested the endmill tool with 45$^{\circ}$helix angle, 6 cutting edge and -15$^{\circ}$rake angle is suitable for high speed machining.

A Study on the Characteristics of Machining for AC8A-T6 Aluminum Alloy (AC8A-T6 알루미늄 합금재의 절삭가공 특성에 관한 연구)

  • 최현민;김경우;김우순;김용환;김동현;채왕석
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.192-197
    • /
    • 2002
  • In this study, examined the cutting characteristics of alumuminum alloy AC8A-T6 that is used to present car piston materials. And in been holding materials machining empirically escape as result that experiment comparison changing the cutting speed and feed on various condition to choose efficient machining condition. The following results can be summarized from this research. 1. As the cutting speed decreased, principal cutting force and thrust cutting force is increased, and reason that cutting force interacts greatly in the low cutting speed is thought by result by BUE's stabilization. 2. The feed speed and cutting speed increase, friction factor is decrescent and the cause appeared the thrust cutting force is fallen than cutting force relatively because chip flow according to increase of the feed rate is constraint. 3. Though specific cutting resistance grows cutting area and the feed rate are few, the cause was expose that shear angle decreases by rake face of tool gets into negative angle remarkably as wear of a cutting tool or defect part of workpiece is cut. 4. Cutting speed do greatly depth of cut is slow, surface roughness examined closely through an experiment that becomes bad, and know that it can get good surface that process cutting speed because do feed rate by 0.1mm/rev low more than 250m/min to get good surface roughness can.

  • PDF

A study on the chatter vibration of two degree of freedom systems (2자유도 채터진동의 특성에 관한 연구)

  • Kim, Jeong-Suk;Kang, Myeong-Chang;Kim, Byeong-Ryoung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.4
    • /
    • pp.216-226
    • /
    • 1993
  • Three dimensional cutting is considered as an equivalent orthogonal cutting through the plane containing both the cutting velocity vector and the chip flow velocity vector in dynamic cutting process. An analytical expression of dynamic cutting force is obtained from the cutting parameters determined by the static cutting. Particular attention is paid to the energy supplied to the vibratory system of cutting tool with two degree of freedom. In this approach, the phase lag of the horizontal vibration of the tool behind the vertical vibration and the direction angle of the fluctuating cutting force is considered in point of stability limits. Chatter vibration can be effectively suppressed by relatively increasing the spring constant and the damping coefficient of the cutting system in the vertical cutting force direction. A good agreement is found between the stability limits predicted by theoretical value and experimental results.

  • PDF

The Effest of Matrix of Nodular Graphite Cast Iron on Machinability in Lathe Turning - Cutting Force, Cutting Ratio and Shear Angle- (球狀黑鉛鑄鐵의 其他組織이 切削性에 미치는 영향 I)

  • 성환태;안상욱
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.6
    • /
    • pp.807-813
    • /
    • 1986
  • The orthogonal cutting method of the nodular graphite cast iron in the lathe turning, whose matrix were formulated under two kinds of annealing conditions, has been experimentally studied and the results investigated. The various characteristics of machinabilities of the nodular cast iron, depending upon its matrix, have been obtained from the results as follows. (1) As depth of cut increases, the cutting ratio and the shear angles tend to slightly increase, and as the containing quantity of ferrite matrix increases, they slightly decrease. (2) As depth of cut increases, the cutting force increases in an approximate straight line, and as the containing quantity of ferrite matrix increases, they decreases and the decreasing rate is about 20-30%. (3) As the containing quantity of ferrite matrix increases, the friction force acting on the tool face decreases and the decreasing rate is about 34-40% in case of the lower depth of cut, but in case of the higher depth of cut the decreasing rate is very small. (4) Both shearing force and vertical force show a lineal increases, and according as ferrite matrix increases there is a decrease by 25% in shearing force and a 12-25% decrease in vertical force. (5) Shearing speed and chip flow speed keep almost a constant value irrespective of matrix.