• 제목/요약/키워드: Chip Shape

검색결과 233건 처리시간 0.025초

베어링의 로브형상과 절삭력 모델링 (Bearing Lobe Profile and Cutting Force Modeling)

  • 윤문철;조현덕;김성근
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1998년도 제28회 추계학술대회
    • /
    • pp.343-349
    • /
    • 1998
  • A modeling of machined geometry and cutting force was proposed for the case of round shape machining, and the effects of internally machined profile are analyzed and its realiability was verified by the experiments of roundness tester, especially in boring operation in lathe. Also, harmonic cutting force model was proposed with the parameter of specific cutting force, chip width and chip thickness, and in this study, we can see that bored workpiece profile was also mapped into cutting force signal with this model. In general, we can calculated the theoretical lobe profile with arbitrary multilobe. But in real experiments, the most frequently measured numbers are 3 and 5 lobe profile in experiments. With this results, we can predict that these results may be applied to round shape machining such as drilling, boring, ball screw and internal grinding operation with the same method.

  • PDF

링 조명에 의한 BGA 볼의 3차원 형상 인식 (Shape Recognition of a BGA Ball using Ring Illumination)

  • 김종형
    • 제어로봇시스템학회논문지
    • /
    • 제19권11호
    • /
    • pp.960-967
    • /
    • 2013
  • Shape recognition of solder ball bumps in a BGA (Ball Grid Array) is an important issue in flip chip bonding technology. In particular, the semiconductor industry has required faster and more accurate inspection of micron-size solder bumps in flip chip bonding as the density of balls has increased dramatically. The difficulty of this issue comes from specular reflection on the metal ball. Shape recognition of a metal ball is a very realproblem for computer vision systems. Specular reflection of the metal ball appears, disappears, or changes its image abruptly due to tiny movementson behalf of the viewer. This paper presents a practical shape recognition method for three dimensional (3-D) inspection of a BGA using a 5-step ring illumination device. When the ring light illuminates the balls, distinctive specularity images of the balls, which are referred to as "iso-slope contours" in this paper, are shown. By using a mathematical reflectance model, we can drive the 3-D shape information of the ball in aquantitative manner. The experimental results show the usefulness of the method for industrial application in terms of time and accuracy.

횡 방향 플립 칩 초음파 접합 시 혼의 공차변수가 시스템의 진동에 미치는 영향 (Effect of the Tolerance Parameters of the Horn on the Vibration of the Thermosonic Transverse Bonding Flip Chip System)

  • 정하규;권원태;윤병옥
    • 한국공작기계학회논문집
    • /
    • 제18권1호
    • /
    • pp.116-121
    • /
    • 2009
  • Thermosonic flip chip bonding is an important technology for the electronic packaging due to its simplicity, cost effectiveness and clean and dry process. Mechanical properties of the horn and the shank, such as the natural frequency and the amplitude, have a great effect on the bonding capability of the transverse flip chip bonding system. In this research, two kinds of study are performed. The first is the new design of the clamp and the second is the effect of tolerance parameters to the performance of the system. The clamp with a bent shape is newly designed to hold the nodal point of the flip chip. The second is the effect of the design parameters on the vibration amplitude and planarity at the end of the shank. The variation of the tolerance parameters changes the amplitude and the frequency of the vibration of the shank. They, in turn, have an effect on the quantity of the plastic deformation of the gold ball bump, which determined the quality of the flip chip bonding. The tolerance parameters that give the great effect on the amplitude of the shank are determined using Taguchi's method. Error of set-up angle, the length and diameter of horn and error of the length of the shank are determined to be the parameters that have peat effect on the amplitude of the system.

외경선삭가공시 등가유효경사각에 따른 칩절단 특성 (Chip Breaking Characteristics Depending on Equivalent Effective Rake Angle in Turning)

  • 이영문;장승일;손정우;윤종훈
    • 한국기계가공학회지
    • /
    • 제3권2호
    • /
    • pp.25-31
    • /
    • 2004
  • Machinability in metal cutting processes depends on cutting input conditions such as cutting velocity, feed rate, depth of cut, types of work material and tool shape factors. In this study, to assess chip breaking characteristics of a turning process, an equivalent oblique cutting system to this has been established. And the equivalent effective rake angle was determined using side rake angle, back rake angle and side cutting edge angle of the tool. A non-dimensional parameter, Chip breaking index(CB), was used to assess Chip breaking characteristics of chip in conjunction with the equivalent effective rake angle. In case of positive rake angles of the equivalent effective rake, the back rake angle has little effect on the chip breaking characteristics however, in case of negative ones, the side rake angle has some effect on Chip breaking characteristics.

  • PDF

A Motion-Control Chip to Generate Velocity Profiles of Desired Characteristics

  • Cho, Jung-Uk;Jeon, Jae-Wook
    • ETRI Journal
    • /
    • 제27권5호
    • /
    • pp.563-568
    • /
    • 2005
  • A motion-control chip contains major functions that are necessary to control the position of each motor, such as generating velocity command profiles, reading motor positions, producing control signals, driving several types of servo amplifiers, and interfacing host processors. Existing motion-control chips can only generate velocity profiles of fixed characteristics, typically linear and s-shape smooth symmetric curves. But velocity profiles of these two characteristics are not optimal for all tasks in industrial robots and automation systems. Velocity profiles of other characteristics are preferred for some tasks. This paper proposes a motion-control chip to generate velocity profiles of desired acceleration and deceleration characteristics. The proposed motion-control chip is implemented with a field-programmable gate array by using the Very High-Speed Integrated Circuit Hardware Description Language and Handel-C. Experiments using velocity profiles of four different characteristics will be performed.

  • PDF

이송속도의 주기적 변화를 이용한 듀랄루민재의 심공가공 특성 (Chatacteristics of Deep Hole Machining for Duralumin Using Periodical Change of Feedrate)

  • 김용제
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2000년도 춘계학술대회논문집 - 한국공작기계학회
    • /
    • pp.240-245
    • /
    • 2000
  • This paper presents the experimental study of drilling for duralumin A2024 with intermittently decelerated feed rate. It is achieved through a programmed periodic increase and decrease in the feed rate using a machining center. The following experimental result were performed with the objective of solving chip to disposal problems. In conventional drilling of aluminum, long continuous chips are produced that wind around the drill causing difficulties in eliminating chips from the cutting zone. In order to acquire the basic data necessary to regulate the chip profile, the relationship between cutting variables and chip shape was investigated. The following conclusions are established from the experimental results. At a suitable feed fluctuation ratio, intermittently decelerated feed drilling proved successful in breaking chips to appropriate lengths while maintaining stable cutting. Thus, it is an effective method for improving chip disposal. The amplitude of the dynamic component of cutting force in intermittent feed frilling is influenced by the feed fluctuation ratio.

  • PDF

주기적 이송속도 변화를 이용한 심공드릴가공 (Deep Hole Drilling by Using Periodical Change of Feedrate)

  • 왕덕현;이윤경;김원일;김용제
    • 한국생산제조학회지
    • /
    • 제9권6호
    • /
    • pp.103-110
    • /
    • 2000
  • Experimental study of drilling for duralumin A2024 was conducted with intermittently accelerated and decelerated feedrate. It is achieved through a programmed periodic increase and decrease in the feedrate using a machining center. The following experimental results were performed with the objective of solving chip to disposal problems. In conventional drilling of aluminum, long continuous chips are produced with winding around the drill and causing difficulties in eliminating chips from the cutting zone. In order to acquire the basic data necessary to regulate the chip profile, the relationship between cutting variables and chip shape was investigate. The following conclusions are established from the experimental results. At a suitable feed fluctuation ratio, intermittently decelerated feed drilling proved successful in braking chips to appropriate lengths while maintaining stable cutting. Thus, it is an effective method for improving chip disposal. The amplitude of the dynamic component of cutting force in intermittent feed drilling is influenced by the feed fluctuation ratio.

  • PDF

선삭가공에 있어서 절삭저항의 동적성분에 관한 연구 [I] -동적성분에 의한 Chip배출상태의 인식- (A Study on the Dynamic Component of Cutting Force in Turning[1] -Recognition of Chip Flow by the Dynamic Cutting Force Component-)

  • 정의식
    • 한국정밀공학회지
    • /
    • 제5권1호
    • /
    • pp.84-93
    • /
    • 1988
  • The on-line detection of the chip flow is one of the most important technologies in com- pletly automatic operation of machine tool, such as FMS and Unmanned Factories. This problem has been studied by many researchers, however, it is not solved as yet. For the recognition of chip flow in this study, the dynamic cutting force components due to the chip breaking were measured by dynamometer of piezo-electric type, and the frequency components of cutting force were also analyzed. From the measured results, the effect of cutting conditions and tool geometry on the dynamic cutting force component and chip formation were investigated in addition to the relationships between frequency of chip breaking (fB) and side serrated crack (fC) of chip. As a result, the following conclusions were obtaianed. 1) The chip formations have a large effect on the dynamic cutting force components. When chip breaking takes place, the dynamic cutting force component greatly increases, and the peridoic components appear, which correspond to maximum peak- frequency. 2) The crater wear of tool has a good effect on the chip control causing the chiup to be formed as upward-curl shape. In this case, the dymamic cutting force component greatly increases also 3) fB and fC of chip are closely corelated, and fC of chips has a large effect on the change of the situation of chip flow and dynamic cutting force component. 4) Under wide cutting conditions, the limit value (1.0 kgf) of dynamic cutting force component exists between the broken and continuous chips. Accordingly, this value is suitable for recognition of chip flow in on-line control of the cutting process.

  • PDF

무연황동의 절삭 칩 형태에 미치는 절삭조건과 템퍼링 온도의 영향 (Cutting Chip Forms on the Cutting Condition and Tempering Temperatures of Lead-free Brass)

  • 주영석;이상봉;김시영;주창식;정병호
    • 열처리공학회지
    • /
    • 제25권1호
    • /
    • pp.14-21
    • /
    • 2012
  • The effects of cutting condition and tempering temperature for the shape of cutting chip were investigated. For this purpose, a lead-free brass containing 1wt.% of Bi extruded at $750^{\circ}C$ in straight turning was used in this study. The cutting chip preferred was mainly found to be loose form of arc chips with curling discontinuity, and these were formed by shear fracture. However, some of fragmental element chip were found to be mixed when tempering temperature was as high as $500^{\circ}C$. The form and size of chip was more affected by feed rate than by tempering temperature and cutting rate. In addition, the cutting surface was observed to be formed more rough in the case of high feed rate and low cutting rate compared to low feed rate and high cutting rate.

광학 시뮬레이션을 이용한 Patterned Sapphire Substrate에 따른 Flip Chip LED의 광 추출 효율 변화에 대한 연구 (A Study on Improvement of the Light Emitting Efficiency on Flip Chip LED with Patterned Sapphire Substrate by the Optical Simulation)

  • 박현정;이동규;곽준섭
    • 한국전기전자재료학회논문지
    • /
    • 제28권10호
    • /
    • pp.676-681
    • /
    • 2015
  • Recently many studies being carried out to increase the light efficiency of LED. The external quantum efficiency of LED, generally the light efficiency, is determined by the internal quantum efficiency and the light extraction efficiency. The internal quantum efficiency of LED was already reached to more than 90%, but the light extraction efficiency is still insufficient compared with the internal quantum efficiency because the total internal reflection is generated in the interface between the LED chip and air. Thus, we studied about flip chip LED with PSS and performed the optical simulation which find more optimized PSS for flip chip LED to increase the light extraction efficiency. Decreasing of the total internal reflection and effect of diffused reflection according to PSS improved the light extraction efficiency. To get more higher the efficiency, we simulated flip chip with PSS that the parameters are arrangement, edge spacing, radius, height and shape of PSS.