• Title/Summary/Keyword: Chip Cooling

Search Result 112, Processing Time 0.029 seconds

Jet Impingement Heat Transfer on a Pedestal Encountered in Chip Cooling (충돌제트를 이용한 pedestal 형상의 칩 냉각연구)

  • Lee, Dae-Hee;Chung, Seung-Hoon;Chung, Young-Suk;Lee, Joon-Sik
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.124-130
    • /
    • 2001
  • The heat transfer and flow measurements were made on a cylindrical pedestal mounted on a flat plate with a turbulent impinging air jet. The heat transfer coefficient distributions on the flat plate were measured using the shroud-transient technique and liquid crystal was used to measure the surface temperature. The jet Reynolds number (Re) is 23,000, the dimensionless nozzle-to-surface distance (L/d) from 2 to 10, the dimensionless pedestal diameter-to-height (H/D) from 0 to 1.5, the dimensionless 2nd pedestal diameter-to-height ($H/D_2$) from 0 to 0.4 and the distance from the stagnation point to 2nd pedestal (p/D). The results show that for H/D = 0.5 to 1.5, the Nusselt number distributions on the plate surface exhibit a maximum between $r/d\;{\cong}\;1.0$ and 1.5. The presence of the pedestal appears to cause the flow separation and reattachment on the plate surface, which results in the maximum heal transfer coefficient. Also, for p/D = 2.5 and $H/D_2$ = 0.3, the local Nusselt number in the region corresponding to $r/d\;{\cong}\;1.1$ was increased up to 50% compared to that for $H/D_2=0$.

  • PDF

Cutting Characteristics of Dry Turning Using Compressed Air (압축공기를 이용한 건식 선삭가공의 절삭특성)

  • Song Chun-Sam;Kim Joo-Hyun
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.1
    • /
    • pp.8-14
    • /
    • 2005
  • The purposes of using cutting fluid during cutting have been cooling, lubricating, chip washing, and anti-corroding. However, the present manufacturing industry restricts the use of cutting fluid because cutting fluid contains poisonous substances which are harmful to the human body. Therefore dry cutting becomes an unavoidable assignment and a lot of researches have studied cutting methods without using cutting fluid. Because dry turning is a continuous work, tools life is reduced by continuous heat generation and surface gets rough due to reduced lubrication, so it is important to consider these situations. In this paper, the way of selecting the optimal machining condition by the minimum number of experiments and the effectiveness of using compressed air in high hardness materials through Taguchi method have been found. Dry cutting using compressed air showed better cutting characteristics than normal dry cutting with respect to by cutting force, tool wear, and surface roughness. Also, the optimal machining condition f3r dry cutting using compressed air could be selected through Taguchi method.

Flow Characteristics in a Microchannel Fabricated on a Silicon Wafer (실리콘 웨이퍼 상에 제작된 미소 유로에서의 유동특성)

  • Kim, Hyeong-U;Won, Chan-Sik;Jeong, Si-Yeong;Heo, Nam-Geon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.12
    • /
    • pp.1844-1852
    • /
    • 2001
  • Recent developments in microfluidic devices based on microelectromechanical systems (MEMS) technique find many practical applications, which include electronic chip cooling devices, power MEMS devices, micro sensors, and bio-medical devices among others. For the design of such micro devices, flows characteristics inside a microchannel have to be clarified which exhibit somewhat different characteristics compared to conventional flows in a macrochannel. In the present study microchannels of various hydraulic diameters are fabricated on a silicon wafer to study the pressure drop characteristics. The effect of abrupt contraction and expansion is also studied. It is found from the results that the friction factor in a straight microchannel is about 15% higher than that in a conventional macrochannel, and the loss coefficients in abrupt expansion and contraction are about 10% higher than that obtained through conventional flow analysis.

The Fabrication and Characteristics of Micro Heat Pipe for IC Chip Cooling (IC 칩 냉각용 초소형 히트 파이프의 제작 및 성능 평가)

  • Park, Jin-Sung;Choi, Jang-Hyun;Cho, Hyoung-Chul;Yang, Sang-Sik;Yoo, Jae-Suk
    • Proceedings of the KIEE Conference
    • /
    • 2000.11c
    • /
    • pp.586-588
    • /
    • 2000
  • 본 논문은 전자 패키징의 방열 성능을 개선하기 위하여 초소형 히트 파이프를 제작하고 열전달 성능을 시험한 결과를 보여준다. IC 칩이 점점 고성능화되고 고집적화되어 감에 따라 발열 문제가 대두되는데, 이 열은 전도만으로는 충분히 소산시킬 수 없고 패키징 표면에 별도의 장치를 장착하는 것은 시스템 소형화의 장애 요소가 된다. 따라서, 고성능 칩 개발을 위한 선결 과제로 고성능 초소형 냉각 장치가 요구되고 있다. 히트파이프는 밀봉된 파이프 내의 2상 유동과 상변화 잠열을 이용하여 열원으로부터 히트 싱크로 열을 효과적으로 전달하는 열교환 장치이다. 본 논문에서는 전자 패키징 내에 집적화할 수 있도록 초소형 히트 파이프 어레이를 제작하여 그 성능을 시험한 결과 증발부의 온도가 $12.1^{\circ}C$ 감소됨을 보인다.

  • PDF

An Experimental Study on the Temperature Distribution according to the Heat Sink Height of 30W LED Floodlight (30W급 LED 투광등 히트싱크 높이변화에 따른 온도분포에 관한 실험적 연구)

  • Kim, Dae-Un;Chung, Han-Shik;Jeong, Hyo-Min;Yi, Chung-Seob
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.5
    • /
    • pp.150-156
    • /
    • 2017
  • This study tests the characteristics of heat radiation by applying the pin-height variables to 30-W LED floodlights. The angle of the heat sink enables us to identify the characteristics of the heat radiation based on the temperature distribution. The results of the study are as follows. When the heat sinks are set towards the ground, the heat transfer decreases in speed only to expands the temperature distribution, which adversely affects the characteristics of heat radiation and expands the temperature distribution of PCB with the LED chip. We verify that the characteristics of heat radiation are adversely affected when the height of the cooling pin decreases and the heat radiation area decreases, which impedes the heat transfer and increases the temperature distribution on the heat sink.

Analysis on the Temperature of Multi-core Processors according to Placement of Functional Units and L2 Cache (코어 내부 구성요소와 L2 캐쉬의 배치 관계에 따른 멀티코어 프로세서의 온도 분석)

  • Son, Dong-Oh;Kim, Jong-Myon;Kim, Cheol-Hong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.4
    • /
    • pp.1-8
    • /
    • 2014
  • As cores in multi-core processors are integrated in a single chip, power density increased considerably, resulting in high temperature. For this reason, many research groups have focused on the techniques to solve thermal problems. In general, the approaches using mechanical cooling system or DTM(Dynamic Thermal Management) have been used to reduce the temperature in the microprocessors. However, existing approaches cannot solve thermal problems due to high cost and performance degradation. However, floorplan scheme does not require extra cooling cost and performance degradation. In this paper, we propose the diverse floorplan schemes in order to alleviate the thermal problem caused by the hottest unit in multi-core processors. Simulation results show that the peak temperature can be reduced efficiently when the hottest unit is located near to L2 cache. Compared to baseline floorplan, the peak temperature of core-central and core-edge are decreased by $8.04^{\circ}C$, $8.05^{\circ}C$ on average, respectively.

CHARACTERISTICS OF THE FAIRCHILD 486 CCD AT MAIDANAK ASTRONOMICAL OBSERVATORY IN UZBEKISTAN (우즈베키스탄 Maidanak 천문대 Fairchild 486 CCD의 기본적인 특성)

  • Lim, Beom-Du;Sung, Hwan-Kyung;Karimov, R.;Ibrahimov, M.
    • Publications of The Korean Astronomical Society
    • /
    • v.23 no.1
    • /
    • pp.1-12
    • /
    • 2008
  • Understanding of the basic characteristics of an astronomical instrument is a prerequisite to obtaining reliable data from the instrument. We have analyzed more than 1,000 calibration images from the Fairchild 486 CCD (hereafter the Maidanak 4k CCD system) attached to the AZT-22 1.5m telescope at Maidanak Astronomical Observatory in Uzbekistan. The Maidanak 4k CCD system supports three readout modes through 1, 2, or 4 amplifiers. In most cases observers use 4-amplifier readout mode to save time. We have tested the stability and seasonal variation of zero levels and confirm that two quadrants of the images (Amp 1 & 2) show no appreciable seasonal variation. but the other two quadrants (Amp 3 & Amp 4) show an evident seasonal variation in the bias level. The Cryo Tiger, the cooling system used at the Maidanak 4k CCD system, maintains the CCD temperature at -108'E, and effectively suppresses the dark electrons. The mean value versus the variance plot of the flat images does not show the expected relation for an ideal Poisson noise distribution and this is attributed to the large variation in quantum efficiency between different pixels. In addition, we confirm that there is no appreciable difference in gain between readout amplifiers, but there is a large variation in quantum efficiency across CCD chip especially in U. Due to the finite length of shutter opening and closing time, the effective exposure time varies across the science images. We introduce two parameters to quantify the effect of this uneven illumination and present a method to remove these effects. We also present a method to remove the interference patterns appearing in the images obtained with longer wavelength filters and investigate the spatial variation of the point spread function.

PROTOTYPE DEVELOPMENT OF CCD IMAGING SYSTEM FOR ASTRONOMICAL APPLICATIONS (천문관측용 극미광 영상장비 시험 모델 개발)

  • Jin, Ho;Han, Won-Yong;Nam, Wuk-Won;Lee, Jae-Woo;Lee, Seo-Gu;Lee, Woo-Baik
    • Journal of Astronomy and Space Sciences
    • /
    • v.14 no.2
    • /
    • pp.259-268
    • /
    • 1997
  • We present the development process of a prototype CCD imaging system which is being built at Korea Astronomy Observatory(KAO) for astronomical applications. The CCD imaging system requires very low noise and high stability characteristics and is widely used for astronomical purposes from infrared to ultraviolet wavelength regions. However its system design, particularly for the controller design technique, as heart of the system, is not secured in Korea so far. The prototype electronics developed in this study consists of a signal chip controller which was implemented in an EPLD(Erasable Programable Logic Device) and an analog driver, a video processor with a LN2 cooling cryostat. A PC system was employed to control the whole system and to store the image data considering compatibility of the system. We have successfully obtained the first image in the laboratory with the prototype of this imaging system, and an image of the M15 at Sobaeksan Astronomy Observatory.

  • PDF

Research on Heat-Sink of 40Watt LED Lighting using Peltier Module (펠티어 소자를 이용한 40[W]급 LED 조명기구의 방열에 관한 연구)

  • Eo, Ik-Soo;Yang, Hae-Sool;Choi, Se-Ill;HwangBo, Seung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.4
    • /
    • pp.733-737
    • /
    • 2007
  • The object of this paper is to propose a method to solve resulting heat in using numerous modulized watt-class LEDs in MCPCB as lighting device. To use LED for lighting, the chip needs to have a large capacity, resulting in extra heat in P-N connection area. To solve this problem, a Pottier Module, heat-sink panel and a fan was installed to measure variations in the temperature. Additionally, temperature variation characteristics were observed according to the heat conductor panel connecting cooling module and heat-sink panel, insulator and thermal grease. As a result, the type and amount of heat-sink panel was the most important facto. The fan would effect the temperature by max. $18[^{\circ}C]$ while other materials affected the temperature by $2{\sim}3[^{\circ}C]$, showing significant difference.

  • PDF

Fracture Toughness Measurement of the Semiconductor Encapsulant EMC and It's Application to Package (반도체 봉지수지의 파괴 인성치 측정 및 패키지 적용)

  • 김경섭;신영의;장의구
    • Electrical & Electronic Materials
    • /
    • v.10 no.6
    • /
    • pp.519-527
    • /
    • 1997
  • The micro crack was occurred where the stress concentrated by the thermal stress which was induced during the cooling period after molding process or by the various reliability tests. In order to estimate the possibility of development from inside micro crack to outside fracture, the fracture toughness of EMC should be measured under the various applicable condition. But study was conducted very rarely for the above area. In order to provide a was to decide the fracture resistance of EMC (Epoxy Molding Compound) of plastic package which is produced by using transfer molding method, measuring fracture is studied. The specimens were made with various EMC material. The diverse combination of test conditions, such as different temperature, temperature /humidity conditions, different filler shapes, and post cure treatment, were tried to examine the effects of environmental condition on the fracture toughness. This study proposed a way which could improve the reliability of LOC(Lead On Chip) type package by comparing the measured $J_{IC}$ of EMC and the calculated J-integral value from FEM(Finite Element Method). The measured $K_{IC}$ value of EMC above glass transition temperature dropped sharply as the temperature increased. The $K_{IC}$ was observed to be higher before the post cure treatment than after the post cure treatment. The change of $J_{IC}$ was significant by time change. J-integral was calculated to have maximum value the angle of the direction of fracture at the lead tip was 0 degree in SOJ package and -30 degree in TSOP package. The results FEM simulation were well agreed with the results of measurement within 5% tolerance. The package crack was proved to be affected more by the structure than by the composing material of package. The structure and the composing material are the variables to reduce the package crack.ack.

  • PDF