• 제목/요약/키워드: Chip Breaker Insert in Milling

검색결과 2건 처리시간 0.015초

밀링용 칩 브레이커 인서트의 절삭력 예측 (Prediction of Cutting Forces for the Chip Breaker Insert in Milling)

  • 김국원;이우영;신효철
    • 대한기계학회논문집
    • /
    • 제17권11호
    • /
    • pp.2664-2675
    • /
    • 1993
  • In this paper, the effects of chip breaker configuration on cutting forces for various cutting conditions are investigated and a method for predicting cutting forces effectively for chip breaker insert in milling is described. Based on the shear plane model and the relevant equations already existing for the relation among the parameters, the method makes use of the analytic geometric approach considering the configuration of cutting too by a 3-dimensional coordinate transformation matrix. The groove type chip breaker insert is modeled to be a double rake insert, represented by the first radial rake angle, the second radial rake angle and the length of land, and the program analyzing the cutting forces is developed. The program capability is verified by comparing the results with the experimental ones for a single cutter; and in case of primary cutting forces, the results of simulation and experiments agree very well showing 2%~16.7% difference within the feed rate range investigated.

측면 칩브레이커형 선삭인서트의 가공특성에 관한 연구 (A Study on the Machining Characteristics of Turning Inserts of Lateral Chip Breaker Shape)

  • 김택수;이상민;조준현;박상현;이종찬
    • 한국기계가공학회지
    • /
    • 제11권2호
    • /
    • pp.171-176
    • /
    • 2012
  • So far, carbide insert production technology was carried out using a diamond grinding wheel. This production technology has problem that raise production costs and decrease in productivity. The SIDE PRESS method to solve this problem have been developed. In this paper, the machining characteristics of lateral chip breaker turning inserts produced by the SIDE PRESS method was studied. The cutting force and the resulting surface roughness were measured at various cutting conditions. The experimental results indicate that the chip breaker inserts of three-dimensional geometry is the best cutting performance.