• Title/Summary/Keyword: Chinese and Korean rivers

Search Result 27, Processing Time 0.02 seconds

Clay mineral distribution and provenance in surface sediments of Central Yellow Sea Mud

  • Koo, HyoJin;Lee, YunJi;Kim, SoonOh;Cho, HyenGoo
    • Geosciences Journal
    • /
    • v.22 no.6
    • /
    • pp.989-1000
    • /
    • 2018
  • The provenance of the Central Yellow Sea Mud (CYSM) in the Yellow Sea has been attracted a great deal of attention over the last three decades, but a consensus is not yet reached. In this study, 101 surface sediment samples collected from the CYSM were investigated to determine provenance and transport mechanisms in the area using the clay minerals and major element components. The Huanghe sediments are characterized by higher smectite, but the Changjiang sediments are more abundant illite contents. Western Korean rivers contain more kaolinite and chlorite than do Chinese rivers. The Chinese rivers have higher $Fe_2O_3$, MgO, and CaO than the Korean rivers at the same $Al_2O_3$ concentration. Therefore, the clay minerals and major element concentrations can be useful indicator for the source. Based on our results, we suggest that the surface sediments in CYSM were composed mainly of Changjiang sediments, mixed a partly with sediments from the Huanghe and the western Korean rivers. Although the northwestern part of CYSM is proximate to the Huanghe, the contents of smectite and CaO were extremely low. It could be evidence that the Huanghe materials do not enter directly into the CYSM due to the Shandong Peninsula Front. Considering the oceanic circulation in the Yellow Sea, the Changjiang sediments could be transported eastward with the Changjiang Diluted Water and then mixed in CYSM via the Yellow Sea Warm Current (YSWC). Huanghe sediments could be provided by coastal currents (Shandong Coastal Current and Yellow Sea Coastal Current) and the YSWC. In addition, sediments from western Korean rivers might be supplied into the CYSM deposit via the Korean Coastal Current, Transversal Current, and YSWC.

Molecular Phylogenetic Status of Korean Hemiculter Species (한국산 살치속(Hemiculter) 어류의 분자계통분류학적 위치)

  • Kim, Maeng Jin;Lee, Jae-Seong;Song, Choon Bok
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.47 no.1
    • /
    • pp.72-78
    • /
    • 2014
  • We investigated the molecular phylogeny and genetic differences among local populations of Korean Hemiculter fishes based on their mitochondrial cytochrome b gene sequences. Our results indicated that Hemiculter leucisculus populations in China were clearly divided into two groups. The first group (Group 1) included the populations of the Yangtze River and its surrounding areas (including the Qiantangjiang, Lingjiang, Jiulongjiang, and Minjiang rivers); the second group (Group 2) contained local populations from southern China (including the Nanliujiang, Zhujiang, Wanquanhe, Qianjiang, and Nandujiang rivers). The Korean Hemiculter eigenmanni differed in its cytochrome b gene sequence by 0.6-1.0% from the Chinese H. leucisculus (Group 1), which inhabited the Yangtze River and its surrounding areas, suggesting they were phylogenetically close and likely to be the same species. The Korean H. leucisculus differed from the Chinese H. leucisculus (both Groups 1 and 2) by 8.1-9.5%, indicating a very distant phylogenetic relationship; however, the Korean H. leucisculus differed from Hemiculter bleekeri by only 0.5-0.7%, showing intraspecific nucleotide differences. We conclude that the taxonomic relationship between the Korean H. leucisculus and H. bleekeri requires further investigation using type specimens.

Constraints of REE Distribution Patterns in Core Sediments and their Provenance, Northern East China Sea (북동중국해 코아 퇴적물의 희토류원소 분포양상과 기원)

  • Jung Hoi-Soo;Lim Dhong-il;Yang Shou Ye;Yoo Hai-Soo
    • Economic and Environmental Geology
    • /
    • v.39 no.1 s.176
    • /
    • pp.39-51
    • /
    • 2006
  • Rare earth elements(REEs) in transgressive shelf core sediments were analysed to identify constraints of REE distribution patterns and sediment provenances in the northern East China Sea(ECS). Sediments of Chinese and Korean rivers, such as Huanghe and Yangtz rivers, Keum and Yeongsan rivers that supply sediments to the northern ECS, were also analysed to figure out their typical REE distribution patterns. The distribution patterns of Chinese and Korean river sediments, which are normalized with upper continental crust (UCC) REE values, appear to be enriched in middle rare earth elements (MREEs) in Chinese river sediments, whereas in light rare earth elements (LREEs) in Korean river sediments. We assign the MREE-enriched convex-type distribution pattern in Chinese river sediments as 'C-type', and the LREE-enriched linearly decreasing pattern in Korean river sediments as 'D-type'. A major constraint of the REE concentration in northern ECS core sediments is interpreted to be LREE-enriched monazite $((Ce,\;La)PO_4)$ that is ubiquitous in and around the study area. Meanwhile, the distribution pattern of northern ECS sediments appears to be between the C-type and the D-type. We suggest that the nothern ECS sediments are the mixture of China and Korea riverine sediments that have been accumulated in paleo-river mouth, paleo-coast, and present-day shelf environment as well.

Molecular Characterization of Dissolved Organic Matter Unveils their Complexity, Origin, and Fate in Glacier and Glacial-Fed Streams and Lakes on the Tibetan Plateau

  • Kim, Min Sung;Zhou, Lei;Choi, Mira;Zhang, Yunlin;Zhou, Yongqiang;Jang, Kyoung-Soon
    • Mass Spectrometry Letters
    • /
    • v.12 no.4
    • /
    • pp.192-199
    • /
    • 2021
  • Alpine glaciers harbor a large quantity of bio-labile dissolved organic matter (DOM), which plays a pivotal role in global carbon cycling as glacial-fed streams are headwaters of numerous large rivers. To understand the complexity, origin, and fate of DOM in glaciers and downstream-linked streams and lakes, we elucidated the molecular composition of DOM in two different Tibetan Plateau glaciers, eight glacial-fed streams and five lakes, using an ultrahigh-resolution 15 Tesla Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer. The compositional changes of the DOM samples revealed that glacier DOM mostly exhibited sulfur-containing organic compounds (CHOS species). We also found that aliphatic formulae contributed more than 50% of the total abundance of assigned molecules in glacier samples, and those compounds were significantly related to CHOS species. The CHO proportions of glacial-fed streams and lakes samples increased with increasing distance from glacial terminals. The relative contribution of terrestrial-derived organics (i.e., lignins and tannins) declined while microbial-originated organics (aliphatics) increased with increasing elevation. This suggested the gradual input of allochthonous materials from non-glacial environment and the degradation of microbe-derived compounds along lower elevations. Alpine glaciers are retreating as a result of climate change and they nourished numerous streams, rivers, and downstream-linked lakes. Therefore, the interpretations of the detailed molecular changes in glacier ice, glacial-fed streams, and alpine lakes on the Tibetan Plateau could provide broad insights for understanding the biogeochemical cycling of glacial DOM and assessing how the nature of DOM impacts fluvial ecosystems.

Occurrence of Labidocera pavo and L. sinilobata(Copepoda: Calanoida: Pontellidae) in Korean waters

  • Hyeon Gyeong Jeong;Ho Young Soh;Jinho Chae
    • Korean Journal of Environmental Biology
    • /
    • v.40 no.4
    • /
    • pp.631-640
    • /
    • 2022
  • Labidocera pavo Giesbrecht, 1889 and L. sinilobata Shen and Lee, 1963, belonging to the detruncata group in the genus Labidocera were collected from the southwestern coastal waters of Korea, using a Norpac net (0.2 mm mesh size). Labidocera sinilobata, known to be endemic species in estuary of Chinese rivers, is the first record in Korean waters. In Chinese waters, this species has only been briefly documented and illustrated. In the study, their morphological characteristics were fully redescribed with careful examination of the fine epidermal structure using a SEM (Scanning Electron Microscope) in addition to their illustrations and compared with species of the detruncata species-group.

Changes in Provenance and Transport Process of Fine Sediments in Central South Sea Mud (남해중앙니질대 세립질 퇴적물의 기원지 및 이동과정 변화)

  • Lee, Hong Geum;Park, Won Young;Koo, Hyo Jin;Choi, Jae Yeong;Jang, Jeong Kyu;Cho, Hyen Goo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.32 no.4
    • /
    • pp.235-247
    • /
    • 2019
  • The Central South Sea Mud (CSSM), developed in the Seomjin River estuary, is known to be supplied with sediments from Heuksan Mud Belt (HMB) and Seomjin River. However, in order to form a mud belt, more sediments must be supplied than supplied in the above areas. Therefore, research on additional sources should be conducted. In this study, clay minerals, major elements analyzes were performed on cores 16PCT-GC01 and 16PCT-GC03 in order to investigate the transition in the provenance and transport pathway of sediments in CSSM. The Huanghe sediments are characterized by higher smectite and the Changjiang sediments are characterized by higher illite. Korean river sediments contain more kaolinite and chlorite than those of chinese rivers. Korean river sediments have higher Al, Fe, K concentraion than Chinese river sediments and Chinese rivers have higher Ca, Mg, Na than those of Korean rivers. Therefore, clay minerals and major elements can be a useful indicator for provenance. Based on our results, CSSM can be divided into three sediment units. Unit 3, which corresponds to the lowstand stage, is interpreted that sediments from Huanghe were supplied to the study area by coastal or tidal currents. Unit 2, which corresponds to the transgressive stage, is interpreted to have a weaker Huanghe effect and a stronger Changjiang and Korean rivers effect. Unit 1, which corresponds to the highstand stage when the sea level is the same as present and current circulation system is formed, is interpreted that sediments from Changjiang and Korean rivers are supplied to the research area through the current.

Major Elemental Compositions of Korean and Chinese River Sediments: Potential Tracers for the Discrimination of Sediment Provenance in the Yellow Sea (한국과 중국의 강 퇴적물의 주성분 원소 함량 특성: 황해 니질 퇴적물의 기원지 연구를 위한 잠재적 추적자)

  • Lim, Dhong-Il;Shin, In-Hyun;Jung, Hoi-Soo
    • Journal of the Korean earth science society
    • /
    • v.28 no.3
    • /
    • pp.311-323
    • /
    • 2007
  • The Yellow and East China seas received a vast amount of sediment $(>10^9ton/yr)$, which comes mainly from the Changjiang and Huanghe rivers of China and the Korean rivers. However, there are still no direct sedimentological-geochemical indicators, which can distinguish these two end-members (Korean and Chinese river sources) in these seas. The purpose of this study is to provide the potential geochemical-tracers enabling these river materials to be identified within the sediment load of the Yellow and East China seas. The compositions of major elements (Al, Fe, Mg, K, Ca, Na, and Ti) of Chinese and Korean river sediments were analyzed. To minimize the grain-size effect, furthermore, bulk sediments were separated into two groups, silt $(60-20{\mu}m)$ and clay $(<20{\mu}m)$ fractions, and samples of each fraction were analyzed for major and strontium isotope $(^{87}Sr/^{86}Sr)$ compositions. In this study, Fe/Al and Mg/Al ratios in bulk sediment samples, using a new Al-normalization procedure, are suggested as an excellent tool for distinguishing the source of sediments in the Yellow and East China seas. This result is clearly supported by the concentrations of these elements in silt and clay fraction samples. In silt fraction samples, Korean river sediments have much higher $^{87}Sr/^{86}Sr$ ratio $(0.7229{\sim}0.7253)$ than Chinese river sediments $(0.7169{\sim}0.7189)$, which suggests the distribution pattern of $^{87}Sr/^{86}Sr$ ratios as a new tracer to discriminate the provenance of shelf sediments in the Yellow and East China seas. On the basis of these geochemical tracers, clay fractions of southeastern Yellow Sea mud (SEYSM) patch may be a mixture of two sediments originated from Korea and China. In contrast, the geochemical compositions of silt fractions are very close to that of Korea river sediments, which indicates that the silty sediments of SEYSM are mainly originated from Korean rivers.

REE and Sr-Nd Isotopic Composition of the Shelf Sediments around Jeju Island, Korea (제주도 주변 대륙붕 퇴적물의 REE와 Sr-Nd 동위원소 조성)

  • Kim, Tae-Joung;Youn, Jeungsu
    • Journal of the Korean earth science society
    • /
    • v.33 no.6
    • /
    • pp.481-496
    • /
    • 2012
  • REE, major and trace elements, and Sr-Nd isotopic ratios of surface sediments around Jeju Island were analyzed for identifying the origin of the sediments. The Chemical Index of Alteration (CIA) between 44.2 to 68.9 (av. 59.4) shows a similarity with the Huanghe sediment. The most sediments found within the study areas show a very similar chondrite-normalized REE pattern that has enriched LREE ($La_{(N)}/Sm_{(N)}$ >3) and small negative Eu anomaly, typically of average shales. The UCC-nornalized REE patterns of the southwestern offshore sediment samples show a very similar pattem with the Changjiang sediment with enriched in most REE and more convex REE pattern than those of the Huanghe and Keum rivers sediments, which indicates that the Changjiang River's suspended sediments have been transported into the western part of Jeju Island. The $^{87}Sr/^{86}Sr$ isotopic ratios vs ${\varepsilon}_{Nd}(0)$ values were thus used as a tracer to discriminate the provenance of sediments in the study area. Based on the discriminated diagram, it clearly showed that most sediments in the western and northwestern part were closely plotted with sediments of the Huanghe River. However, the sediments in the southwestern part near the Changjianf estuary were closely plotted with submerged delta sediments of the Changjiang River. In contrast, the sediment samples of the northeastern part showed discriminative figures from those of the Chinese rivers. It suggests that sediments around Jeju Island must be originated from diverse sources.

Clay minerals and geochemistry of continental shelf sediment around Jeju Island in the northern East China Sea (제주도 주변해역 대륙붕 퇴적물의 지화학적 조성과 점토광물 연구)

  • Youn, Jeung-Su
    • The Korean Journal of Quaternary Research
    • /
    • v.23 no.1
    • /
    • pp.25-37
    • /
    • 2009
  • Geochemical composition and clay minerals of surface and core sediments around off the Jeju Island were analyzed for identification of sediment origins. The clay mineral distribution is mainly controlled by the sediment source and the dominant circulation pattern. Smectite is highly concentrated (>8%) in the northwest near the South Yellow Sea and in the outer-shelf mud patch. It seems to be due to the high supply of smectite transported from China where fine-grained sediments are discharged from modern and ancient Huanghe River. The relatively high abundance of kaolinite are found in northeastern nearshore area and the southwest near Changjiang estuary. It seems to be supplied from Changjiang River and the southwestern Korea rivers. The sediment accumulation rates measured by $^{210}Pb$ geochronrom mowere 0.20 to 0.54cm/mr or 0.15 to $0.42g/cm^2{\cdot}mr^{-1}$ AOJI, with decreasing rates from the west part to the east part, resulting in the supply of fine-grained suspended sediments from the Changjiang and Huanghe Rivers system. The discrimination diagrams clearly show that the sediments around Jeju Island in the northern East China Sea are ultimately sourced from Chinese rivers, especially from the Huanghe River, whereas the sediment in the northeast part might come from Korean rivers and the Jeju Island.

  • PDF

An Analysis of the Visual Characteristics and Preference Factors of Traditional Landscape of Rivers in Kangnam Region of China - With a Case of River in Zhouzhuang, Jiangsu Province of China - (중국 강남 전통 수향(水鄕) 하천 경관의 시각적 특성 및 선호요인 분석 - 중국 강수성 주장(周莊) 하천경관을 중심으로 -)

  • Kim, Dong-Chan;Song, Mei-Jie
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.28 no.3
    • /
    • pp.122-130
    • /
    • 2010
  • The Study takes the rivers in Zhouzhuang - traditional Chinese Kangnam watery landscape as the object. The purpose of this study is to grasp the relationships between visual characteristics and the preference. The following is the research process: Firstly, the theoretical study of Zhouzhuang, the traditional Kangnam region in China, is conducted, the watery landscape is taken pictures, and 22 photos are selected. Secondly, in order to grasp the visual preference and landscape characteristics of the watery landscape in Zhouzhuang, 22 pictures and 25 pairs of adjectives are adopted for the questionnaire survey. Thirdly, in order to have a better understanding on the physical properties and effects of physical quantity on the preference, the occupation ratios of buildings and sculptures, natural elements, footpaths, bank revetments and other landscape elements are calculated, and the mean analysis, dispersion analysis and regression analysis are conducted. In order to grasp the landscape characteristics and preference factors, 25 pairs of adjectives are used to conduct the factor analysis. In order to grasp the effects of characteristics of visual factors on the preference, the dispersion analysis and regression analysis are carried out. The results are as follows: From the results of the landscape preference analysis, in the No.22 photo with the top preference, 11 pairs of adjectives, namely, "harmonious-disharmonious", "beautiful-ugly", "rural-urban", "soft-rough", "stable-instable", "romantic-realistic", "cheerful-gloomy", "brilliant-simple", "natural-artificial", "familiar-strange", and "clean-dirty" have positive effects on watery landscape. It can be viewed as the relatively important factor in the visual preference. In terms of the results of visual physical quantity analysis of traditional Chinese Kangnam watery landscape, the landscape with high occupation ratio of buildings and sculptures has positive effects on visual preference. The results of analysis of visual physical quantity and preference show that the preference degree increases as the occupation ratio of footpath area increases. The analysis results of visual characteristics of traditional Chinese Kangnam watery landscape identify four factors, namely psychological factor, cultural factor, condition factor and physical factor. It can be concluded from the results of analysis of the relationships between visual preference and visual characteristics that the return coefficient B of the psychological factor is +0.936. It can significantly affect the watery landscape, so it can be identified as the most important factor among the visual preference factors of Chinese Kangnam watery landscape.