• 제목/요약/키워드: Chinese Dabieshan Cattle

검색결과 1건 처리시간 0.018초

Genetic variants of the growth differentiation factor 8 affect body conformation traits in Chinese Dabieshan cattle

  • Zhao, Shuanping;Jin, Hai;Xu, Lei;Jia, Yutang
    • Animal Bioscience
    • /
    • 제35권4호
    • /
    • pp.517-526
    • /
    • 2022
  • Objective: The growth differentiation factor 8 (GDF8) gene plays a key role in bone formation, resorption, and skeletal muscle development in mammals. Here, we studied the genetic variants of GDF8 and their contribution to body conformation traits in Chinese Dabieshan cattle. Methods: Single nucleotide polymorphisms (SNPs) were identified in the bovine GDF8 gene by DNA sequencing. Phylogenetic analysis, motif analysis, and genetic diversity analysis were conducted using bioinformatics software. Association analysis between five SNPs, haplotype combinations, and body conformation traits was conducted in 380 individuals. Results: The GDF8 was highly conserved in seven species, and the GDF8 sequence of cattle was most similar to the sequences of sheep and goat based on the phylogenetic analysis. The motif analysis showed that there were 12 significant motifs in GDF8. Genetic diversity analysis indicated that the polymorphism information content of the five studied SNPs was within 0.25 to 0.5. Haplotype analysis revealed a total of 12 different haplotypes and those with a frequency of <0.05 were excluded. Linkage disequilibrium analysis showed a strong linkage (r2>0.330) between the following SNPs: g.5070C>A, g.5076T>C, and g.5148A>C. Association analysis indicated these five SNPs were associated with some of the body conformation traits (p<0.05), and the animals with haplotype combination H1H1 (-GGGG CCTTAA-) had greater wither height, hip height, heart girth, abdominal girth, and pin bone width than the other (p<0.05) Dabieshan cattle. Conclusion: Overall, our results indicate that the genetic variants of GDF8 affected the body conformation traits of Chinese Dabieshan cattle, and the GDF8 gene could make a strong candidate gene in Dabieshan cattle breeding programs.