• Title/Summary/Keyword: Chimeric Chickens

Search Result 8, Processing Time 0.023 seconds

Production of Transgenic Chimeric Chickens Using Blastodermal Cells

  • Yan, Haifeng;Lee, Chaeyoung;Xiao, Bingnan;Trefil, Pavel;Liu, Shixun;Kim, Younyoung;Wu, Xiaolin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.2
    • /
    • pp.158-164
    • /
    • 2005
  • A practical approach was proposed to produce transgenic chimeric chickens using blastodermal cells (BCs). The chicken BCs were mechanically dissociated and transferred into the recipient eggs that had been exposed to 500 rads irradiation of$^{60}Co$ and windowed on the equatorial plane. Chimeric chickens were generated using two models: the crosses (MXL) from Black Minors (ii,EE,b/b) ♂${\times}$Barred Leghorns (ii,ee,B/-) ♀ as donors and White Leghorns (WL, II) as acceptors (Model 1), or the Black Heifengs (BH, ii,EE,bb) as donors and Hua-xing white (HW, II) as recipients (Model 2). The treated eggs were incubated in their original shells in normal conditions until hatching. Green fluorescent protein (GFP) gene was transferred into the BCs derived from MXL and BH via lipofectamine and the pEGFP-C1, and transfection efficiency into the BCs was examined under a fluorescent microscope. Potential transgenic chimeras were selected based on the proposed methods in this study. Using the fresh BCs, the best rate of phenotypic chimeras was 6.7% and 26.0% in model-1 groups, and model-2 groups, respectively. We also described the optimized conditions for transfection. Although 30% of the BCs transfected in vitro emitted green light under an inverted fluorescent microscope, no embryos injected with the transfected BCs expressed foreign GFP gene at 3-4 days.

High Transmission Rate of Germline Chimerism Using Cultured Primordial Germ Cells in Chickens.

  • Song, Gwon-Hwa;Park, Tae-Sub;Kim, Duk-Kyung;Kim, Jin-Nam;Lee, Young-Mok;Kim, Ki-Dong;Han, Jae-Yong
    • Proceedings of the Korea Society of Poultry Science Conference
    • /
    • 2000.11a
    • /
    • pp.88-90
    • /
    • 2000
  • Although primordial germ cells(PGCs) have been used in the production of germline chimera, efficiency has not been satisfactory. The Present study was conducted to improve efficiency of germline chimera production using the cultured gonadal PGCs(gPGCs). Germline chimeric chickens were produced by transfer of cultured gonadal primordial germ cells from Korean Ogol Chicken (KOC) to White Leghorn (5.5-day-old) and cultured in vitro for 10 days. Approximately 200 gPGCs (2-day-old) recipient embryos from which blood had been withdrawn via the dorsal aorta prior to the injection. Recipient embryos were incubated until hatching. Germline chimerism of the chickens reaching maturity was examined by mating them with Korean Ogol Chicken. Donor-derived offspring were identified as germline chimeric chickens based on their feather color. The frequency of germline transmission of donor PGCs ranged 1.9∼60.7%. There was no difference between both sexes. Therefore, it can be concluded that efficiency of germline chimerism can be improved via using cultured gPGCs.

  • PDF

Possible Production of Transgenic Chicken by Transferring Foreign Genes and Germ Cells (외부유전자의 전이에 의한 배아세포와 트란스젠닉 가금 생산의 가능성)

  • Fujihara, N.
    • Korean Journal of Poultry Science
    • /
    • v.26 no.2
    • /
    • pp.119-129
    • /
    • 1999
  • In recent years, numerous researches have been carried out in author's laboratory to develop several kinds of methods for producing transgened chicken, leaving a lot of new findings. Some of them are very useful to search for new approaches necessary to improve the efficiency of hatchability and the survival rate of developing trasgened embryos. The results obtained hitherto might be summarized as follows: (1) foreign gene(Lac Z/ Miw Z) introduced into blastodermal cells of developing embryos was successfully transferred to embryos, leading to the production of primordial germ cells(PGCs) carrying foreign DNA. However, hatched hickens failed to show the incorporation of introduced gene into the gonads. (2) When foreign gene was introduced into germinal crescent region (GCR), the gene was also efficiently incorporated into germ cells, resulting in the production of transgened chickens(offspring) which produced fruther offspring having foreign gene in the gonads. In this case, 2nd and 3rd generations of chickens were obtained through the reproduction of transgened birds. (3) In another way, the gene was injected into blood vessels of developing embryos at stage 13∼15, creating PGCs having foreign gene, and produced some transgened chickens. In this work, the PGCs were transfered between embryos, resulting in the production of transgenic chickens. (4) in these experiments, PGCs were effectively employed for producing transgenic birds, developing some kinds of chimeric chickens from homo- or hetero-sexual transfer of the PGCs from embryos. This means that the gonads from donor PGCs developed in some degree to the stage of hatching. However, these gonads showed slightly abnormal tissues similar to ovotestis like organs through histological examination. (5) Avian Leukosis Virus(ALV) induced B cell line(DT40) successfully carried foreign genes into chicken embryos, suggesting the possibility of the cells as a vector in this field of study in the future. (6) Inter-embryonic transfer of the PGCs also gave us some.

  • PDF

Avian Somitic Cell Chimeras Using Surrogate Eggshell Technology

  • Mozdziak, Paul E.;Hodgson, Dee;Petitte, James N.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.6
    • /
    • pp.801-806
    • /
    • 2008
  • A classical technique to study somitic cell fate is to employ the cross-transplantation of quail somites into a chick host. The densely stained nucleoli of the quail cells makes it possible to assess the fate of the donor quail cells in the chick host. Classical somite transplantation techniques have been hampered by the necessity of a small opening in the chick eggshell, difficulty in hatching the offspring and interspecies post-hatch graft rejection. With the advent of transgenic chicken technology, it is now possible to use embryos from transgenic chickens expressing reporter genes in somite cross-transplantation techniques to remove any possibility of interspecies graft rejection. This report describes using a surrogate eggshell system in conjunction with transgenic chick:chick somitic cell cross-transplantation to generate viable chimeric embryos and offspring. Greater than 40% of manipulated embryos survive past 10 days of incubation, and ~80% of embryos successfully cultured past 10 days of incubation hatched to produce viable offspring.

The Investigation of Cell Culture Conditions to Maintain Chicken Embryonic Stem Cells as Totipotent Cells

  • Du, Lixin;An, Jing
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.8
    • /
    • pp.1102-1107
    • /
    • 2003
  • The ES cell can provide a useful system for studying differentiation and development in vitro and a powerful tool for producing transgenic animalds. To investigate the culture condition of chicken embryonic stem (CES) cells which can retain their multipotentiality or totipotency, three kinds of feeder layer cells, SNL cells, primary mice embryonic fibroblasts (PMEF) cells and primary chicken embryonic fibroblasts (PCEF) cells, were used as the feeder cells in media of DMEM supplemented with leukemia inhibitory factor (LIF), basic fibroblast growth factor (bFGF) and stem cell factor (SCF) for co-culture with blastoderm cells from stage X embryos of chicken. The alkaline phosphatase (AKP) test, differentiation experiment in vitro and chimeric chicken production were carried out. The results showed that culture on feeder layer of PMEF yielded high quality CES cell colonies. The typical CES cells clone shape revealed as follows: nested aggregation (clone) with clear edge and round surface as well as close arrangement within the clone. Strong alkaline phosphatase (AKP) reactive cells were observed in the fourth passage cells. On the other hand, the fourth passage CES cells could differentiate into various cells in the absence of feeder layer cells and LIF in vitro. The third and fourth passage cells were injected into the subgerminal cavity of recipient embryos at stage X. Of 269 Hailan embryos injected with CES cells of Shouguang Chickens, 8.2% (22/269) survived to hatching, 5 feather chimeras had been produced. This suggests that an effective culture system established in this study can promote the growth of CES cells and maintain them in the state of undifferentiated and development, which lays a solid foundation for the application of CES cells and may provide an alternative tool for genetic modification of chickens.

Possible Abnormalities of Chimeric Chicken Caused by the Introduction of Exogenous Genes Into Chicken Embryos via Primordial Germ Cells (PGCs)

  • Ebara, Fumio;Fujihara, Noboru
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.11
    • /
    • pp.1514-1517
    • /
    • 2000
  • In chicken, exogenous genes introduced into germinal crescent region (GCR) of the early developmental stage, where primordial germ cells (PGCs) were concentrated, were successfully transferred to the gonads via PGCs. The foreign genes were also confirmed to be successfully incorporated into F1 and F2 generations. We tried to incorporate the exogenous genes into PGCs by lipofection, then the DNA mixture was injected into GCR at stage 3-5 or 9-11 of embryonic development (Hamburger and Hamilton, 1951). The manipulated eggs were incubated, and hatched chicks were reared until sexual maturation. F1 generation was obtained from the DNA-treated chicken (DNA-chicken) mated with normal birds. Furthermore, F2 generation was also obtained from the F1 chicken mated with normal birds. The transfer of introduced foreign genes were confirmed by marker gene detection methods and PCR analysis in the hatched chicks, F1 and F2 generations. However, in our experiments, DNA-chickens showed abnormal characteristics such as low egg production rate, abnormal appearance and decreased number of spermatozoa. In the case of F1 chicken, low egg production and the deterioration of sperm capacity for insemination in male chicken were observed.

조류의 다능성 생식세포주 확립 및 분화 특성에 관한 연구

  • 박태섭;한재용
    • Proceedings of the Korea Society of Poultry Science Conference
    • /
    • 2001.11a
    • /
    • pp.40-46
    • /
    • 2001
  • The use of pluripotent stem cells has tremendous advantages for various purposes but these cell lines with proven germ-line transmission have been completely established only in the mouse. Embryonic germ (EG) cell lines are also pluripotent and undifferentiated stem cells established from primordial germ cells (PGCs). This study was conducted to establish and characterize the chicken EG cells derived from gonadal primordial germ cells. We isolated gonadal PGCs from 5.5-day-old (stage 28) White leghorn (WL) embryos and established chicken EG cells lines with EG culture medium supplemented with human stem cell factor (hSCF), murine leukemia inhibitory factor (mLIF), bovine basic fibroblast growth factor (bFGF), human interleukin-11 (hIL-11), and human insulin-like growth factor-I (hIGF-I). These cells grew continuously for 4 months (10 passages) on a feeder layer of mitotically active chicken embryonic fibroblasts. These cells were characterized by screening with the Periodic acid-Shiff's reaction, anti-SSEA-1 antibody, and a proliferation assay after several passages. As the results, the chicken EG cells maintained characteristics of undifferentiated stem cells as well as that of gonadal PGCs. When cultured in suspension, the chicken EG cells successfully formed an embryoid body and differentiated into a variety of cell types when re-seeded onto culture dish. The chicken EG cells were injected into blastodermal layer at stage X and dorsal aorta of recipient embryo at stage 14 (incubation of 53hrs) and produced chimeric chickens with various differentiated tissues derived from the EG cells. The germline chimeras were also successfully induced by using EG cells. Thus, Chicken EG cells will be useful for the production of transgenic chickena and for studies of germ cell differentiation and genomic imprinting.

  • PDF

Developmental Genetic Analysis of Avian Primordial Germ Cells and the Application to Poultry Biotechnology

  • Kagami, H.
    • Korean Journal of Poultry Science
    • /
    • v.28 no.2
    • /
    • pp.135-142
    • /
    • 2001
  • A novel sterategy has been established to determine the origin of the Primordial Germ Cells (PGCs) in avian embryos directly and the developmental fate of the PGCs for the application to Poultry biotechnology. Cells were removed from 1) the centre of area pellucida, 2) the outer of area pellucida and 3) the area opaca of the stage X blastoderm (Eyal-Giladi & Kochav, 1976). When the cells were removed from the centre of area pellucida, the mean number of circulating PGCs in blood was significantly decreased in the embryo at stage 15 (Hamburger & Hamilton, 1951) as compared to intact embryos. When the cells were replenished with donor cells, no reduction in the PGCs number was observed. The removal of cells at the outer of area pellucida or at the area opaca had no effect on the number of PGCs. In case, another set of the manipulated embryos were cultured ex vivo to the hatching and reared to the sexual maturity, the absence of germ cells and degeneration of seminiferous tubules was observed in resulting chickens derived from the blastoderm in which the cells were removed from the centre of the area pellucida. It was concluded that the avian Primordial Germ cells are originated at the center of area pellucida. Developmental ability of the cells to differentiate into somatic cells and germ cells in chimeras were analyzed. Somatic chimerism was detected as black feather attributed from donor cells. Molecular identification by use of female - specific DNA was performed. It was confirmed that the donor cells could be differentiated into chimeric body and erythrocytes. Donor cells retained the ability to differentiate into germline in chimeric gonads. More than 70% of the generated chimeras transmitted donor derived gametes to their offspring indicating that the cells at the center of area pellucida had the high ability to differentiate into germ cells. A molecular technique to identify germline chimerism has been developed by use of gene scan analysis. Strain specific DNA fragments were amplified by the method. It would be greatly contributed for the detection of germline chimerism. Mixed- sex chimeras which contained both male and female cells were produced to investigate the developmental fate of male and female cells in ovary and testes. The sex combinations of donor and recipient of the resulting chimeras were following 4 pairs; (1) chimeras (ZZ/ZZ) produced by a male donor (ZZ) and a male recipient (ZZ), (2) chimeras (ZW/ZW) produced by a female donor (ZW) and a female recipient (ZW), (3) chimeras (ZZ/ZW) Produce by a male donor (ZZ) and a female recipient (ZW), (4) chimeras (ZW/ZZ) produced by a female donor (ZW) and a male recipient (ZZ). It was found that genetically male avian germ cells could differentiate into functional ova and that genetically female germ cells can differentiate into functional spermatozoa in the gonad of the mixed- sex chimeras. An ability for introduction of exogenous DNA into the PGCs from stage X blastoderms were analyzed. Two reporter genes, SV-$\beta$gal and RSV-GFP, were introduced into the PGCs. Expression of bacterial/gal was improved by complexing DNA with liposome detectedcc in 75% of embryos at 3 days embryos. At the embryos incubated for 1 day, expression of the GFP was observed all the embryos. At day 3 of incubation, GFP was detected in about 70% of the manipulated embryos. In case of GFP, expression of the transgene was detected in 30 %e of the manipulated embryos. These results suggested that the cells is one of the most promising vectors for transgenesis. The established strategy should be very powerfull for application to poultry biotechnology.

  • PDF