• 제목/요약/키워드: Chimera grid technique

검색결과 18건 처리시간 0.02초

Chimera 격자기법을 이용한 자동차 주위의 유동장 해석 (Analysis of the flow field around an automobile with Chimera grid technique)

  • 안민기;박원규
    • 한국전산유체공학회지
    • /
    • 제3권2호
    • /
    • pp.39-51
    • /
    • 1998
  • This paper describes the analysis of flow field around an automobile. The governing equations of the 3-D unsteady incompressible Navier-Stokes equations are solved by the iterative time marching scheme. The Chimera grid technique has been applied to efficiently simulate the flow around the side-view mirror. To validate the capability of simulating the flow around a ground vehicle, the flows around the Ahmed body with 12.5$^{\circ}$ and 30$^{\circ}$ of slant angles are simulated and good agreements with experiment and other numerical results are achieved. To validate Chimera grid technique, the flow field around a cylinder was also calculated. The computed results are also well agreed with other numerical results and experiment. After code validations, the flow phenomena around the ground vehicle are evidently shown. The flow around the side-view mirror is also well simulated using the Chimera grid technique.

  • PDF

CHIMERA 격자기법을 이용한 고속전철 주위의 전산유동해석 (Numerical Flow Simulations Around High Speed Train Using CHIMERA Grid Technique)

  • 최성욱;김인선
    • 한국전산유체공학회지
    • /
    • 제1권1호
    • /
    • pp.81-87
    • /
    • 1996
  • The aerodynamic charateristics of high speed train can be improved by well-designing of its fore-body shape. In this paper, as a way of the design a fore-body shape which has optimal aerodynamic charasteristics, 9 models of fore-body shapes are proposed and the change of aerodynamic charateristics is studied through calculations of flow field around high speed train for each fore-body shape. The flow field around high speed trains are calculated using Thin-Layer Navier-Stokes equation and Chimera grid technique. The application of Chimera grid technique to these flow calculations over high speed train which has ground plane under the train makes grid generation easily. As a computaional algorithm, Pulliam and Chaussee's Diagonal algorithm, the modified form of the Beam and Warming's AF scheme which operates on block-tridiagonal matrices, is selected to reduce computaional time. Introducing hole points flag concept to this Diagonal algorithm. a algorithm for Chimera grid is generated. The variational trends of aerodynamic characteristics are studied from the results of flow calculations around high speed trains for 9 fore-body shapes.

  • PDF

병렬화된 Chimera 격자 기법을 이용한 다단 로켓의 단분리 운동 해석 (Numerical Analysis on Separation Dynamics of Multi-stage Rocket System Using Parallelized Chimera Grid Scheme)

  • 고순흠;최성진;김종암;노오현;박정주
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2002년도 춘계 학술대회논문집
    • /
    • pp.47-52
    • /
    • 2002
  • The supersonic flow around multi-stage rocket system is analyzed using 3-D compressible unsteady flow solver. A Chimera overset grid technique is used for the calculation of present configuration and grid around the core rocket is composed of 3 zones to represent fins in the core rocket. Flow solver is parallelized to reduce the computation time, and an efficient parallelization algorithm for Chimera grid technique is proposed. AUSMPW+ scheme is used for the spatial discretization and LU-SGS for the time integration. The flow field around multi-stage rocket was analyzed using this developed solver, and the results were compared with that of a sequential solver The speed-up ratio and the efficiency were measured in several processors. As a result, the computing speed with 12 processors was about 10 times faster than that of a sequential solver. Developed flow solver is used to predict the trajectory of booster in separation stage. From the analyses, booster collides against core rocket in free separation case. So, additional jettisoning forces and moments needed for a safe separation are examined.

  • PDF

Chimera 격자 기법을 이용한 Car-like body 주위의 전체 유동 해석 (Full flow analysis around a Car-like body using Chimera grid technique)

  • 오상욱;박원규
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1997년도 추계 학술대회논문집
    • /
    • pp.86-91
    • /
    • 1997
  • This paper describes analysis of complex flow around Car-like body using Chimera grid technique. As a computational algorithm, Pullboat and Chaussee's Diagonal algorithm is selected to reduce computational time. Introducing hole points flag to this Diagonal algorithm, an algorithm for Chimera grid is generated easily. This study solves 3-D unsteady incompressible Navier-Stokes equations on a non-orthogonal curvilinear coordinate system using second-order accurate schemes for the time derivatives, and third/second-order scheme for the spatial derivatives. The Marker-and-Cell concept is applied to efficiently solve continuity equation. The fourth-order artificial damping is added to the continuity equation for numerical stability, It has concluded that the results of present study properly agree with physical flow phenomena.

  • PDF

보존적 중첩격자기법을 이용한 동적 플랩의 천이적 공력거동에 관한 수치적 연구 (Numerical Study on Transient Aerodynamics of Moving Flap Using Conservative Chimera Grid Method)

  • 최성욱;장근식;김인선
    • 한국전산유체공학회지
    • /
    • 제5권2호
    • /
    • pp.9-19
    • /
    • 2000
  • Transient aerodynamic response of an airfoil to a moving plane-flap is numerically investigated using the two-dimensional Euler equations with conservative Chimera grid method. A body moving relative to a stationary grid is treated by an overset grid bounded by a 'Dynamic Domain Dividing Line' which has an advantage for constructing a well-defined hole-cutting boundary. A conservative Chimera grid method with the dynamic domain-dividing line technique is applied and validated by solving the flowfield around a circular cylinder moving supersonic speed. The unsteady and transient characteristics of the flow solver are also examined by computations of an oscillating airfoil and a ramp pitching airfoil respectively. The transient aerodynamic behavior of an airfoil with a moving plane-flap is analyzed for various flow conditions such as deflecting rate of flap and free stream Mach number.

  • PDF

보존적 중첩격자기법을 이용한 동적 플랩의 천이적 공력거동에 관한 수치적 연구 (Numerical Study on Transient Aerodynamics of Moving Flap Using Conservative Chimera Grid Method)

  • 최성욱;장근식
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1999년도 추계 학술대회논문집
    • /
    • pp.85-94
    • /
    • 1999
  • Transient aerodynamic response of an airfoil to a moving plane-flap is numerically investigated using two-dimensional Euler equations with conservative Chimera grid method. A body moving relative to a stationary grid is treated by an overset grid bounded by a 'dynamic domain-dividing line' the concept of which is developed in this study. A conservative Chimera grid method with a dynamic domain-dividing line technique is applied and validated by solving the flowfield around circular cylinder moving supersonic speed. The unsteady and transient characteristics of the flow solver is also examined by computations of a oscillating airfoil and a ramp pitching airfoil respectively. The transient aerodynamic behavior of an airfoil with a moving plane-flap is analyzed for various flow conditions such as deflecting rate of flap and free stream Mach number.

  • PDF

측풍의 편향각 변화에 따른 자동차 주위의 유동해석 (Numerical analysis of flow field around an automobile with variation of yaw angles)

  • 강동민;정영래;박원규;하성도
    • 한국전산유체공학회지
    • /
    • 제4권3호
    • /
    • pp.1-11
    • /
    • 1999
  • This paper describes the flow field analysis of an automobile with crosswind effects of 15°, 30° 45° and 60° of yaw angles. The governing equations of the 3-D incompressible Navier-Stokes equations are solved by the iterative time marching scheme. The Chimera grid technique has been applied to efficiently simulate the flow around the side-view mirror. The computated surface pressure coefficients have been compared with experimental results and a good agreement has been achieved. The A- and C-pillar vortex and other flow phenomena around the ground vehicle are evidently shown. The variation of aerodynamic coefficients of drag, lift, side force and moments with respect to yaw angle is systematically studied.

  • PDF

Chimera 격자기법을 이용한 Car-like body 주위 유동장 및 공력소음 해석 (Analysis of flow and aeroacoustic field around a car-like body with Chimera grid technique)

  • 안민기;박원규;홍성훈
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1998년도 춘계 학술대회논문집
    • /
    • pp.99-109
    • /
    • 1998
  • This paper describes the analysis of flow and aeroacoustic field around a car-like body. The governing equations, 3-D unsteady incompressible Navier-Stokes equations, are solved with the iterative time marching scheme. The Chimera grid technique has been applied to efficiently simulate the flow around the side-view mirror, After the flow field analysis has been converged, the aerodynamic noise analysis of the side-view mirror has been performed by solving Ffowcs Williams and Hawkings equation. From the present numerical simulation, the A- and C-pillar vortex are evidently shown and the aerodynamic noise level induced by the side-view mirror is predicted to about 100dB.

  • PDF

움직이는 격자계를 이용한 유도탄의 비정상 분리 유동해석 (Unsteady Separation Simulation of Missile by Using Moving Grid)

  • 강경태;이복직;안창수
    • 한국군사과학기술학회지
    • /
    • 제10권2호
    • /
    • pp.47-52
    • /
    • 2007
  • Missile staging and airframe separation simulation were performed by using a numerical technique for simulating the dynamics of multiple moving bodies. A 6DOF model is fully integrated into the CFD solution procedure to determine the body dynamics. Chimera grid technique offered efficient CFD simulation of multiple moving bodies. Through this simulation the safety of deployed staging and airframe separation mechanism was verified.

비정상 Euler 방정식을 이용한 Chimera 기법의 병렬처리에 관한 연구 (A Study of Parallel Implementations of the Chimera Method using Unsteady Euler Equations)

  • 조금원;권장혁;이승수
    • 한국전산유체공학회지
    • /
    • 제4권3호
    • /
    • pp.52-62
    • /
    • 1999
  • The development of a parallelized aerodynamic simulation process involving moving bodies is presented. The implementation of this process is demonstrated using a fully systemized Chimera methodology for steady and unsteady problems. This methodology consists of a Chimera hole-cutting, a new cut-paste algorithm for optimal mesh interface generation and a two-step search method for donor cell identification. It is fully automated and requires minimal user input. All procedures of the Chimera technique are parallelized on the Cray T3E using the MPI library. Two and three-dimensional examples are chosen to demonstrate the effectiveness and parallel performance of this procedure.

  • PDF