• Title/Summary/Keyword: Chicken macrophage

Search Result 18, Processing Time 0.028 seconds

Production of monoclonal antibodies specific to the surface antigens of chicken peripheral blood mononuclear cells (닭의 혈액내 단핵세포 표면항원 특이 단클론성 항체 생산)

  • Choi, Jun-Gu;Sung, Haan-Woo;Kim, Sun-Joong
    • Korean Journal of Veterinary Research
    • /
    • v.42 no.2
    • /
    • pp.209-217
    • /
    • 2002
  • This study was performed to produce monoclonal antibodies (mAb) specifically reacting with chicken leukocyte surface antigens. Popliteal lymph node cells of BALB/c mice previously immunized through foot-pad with peripheral blood mononuclear cells (PBMC) of chickens separated by Ficoll-Histopaque method. They were fused with P3X63Ag14 mouse myeloma cells. A total of 34 hybridomas secreted antibodies specifically binding to the PBMC. According to the reactivity patterns with PBMC, the mAbs were divided into 4 groups. Group 1 mAbs (IIB3, IIB10, IIE10) specifically reacted with non-adherent lymphocytes but not with adherent cells which were mainly composed of thrombocytes and monocytes in PBMC culture. These mAbs were reactive with 25-59% of thymus cells and 42-64% of spleen cells of chickens. They did not show any significant reactivity with cells in the bursa of Fabricius, T-cell (MDCC-MSB1) and B-cell (LSCC-1104B1) lines. These results indicate that Group I mAbs specifically reacted with T-lymphocyte subpopulation. Monoclonal antibodies in Group II (IC6, IG2-2 and IID9) showed specific reactivity with monocytes but not with thrombocytes or non-adherent cells in PBMC culture. These mAbs, though not reacted with the chicken macrophage cell line, HD11, also bound to macrophages of the spleen and lung in immunohistochemical staining. Five mAbs in Group III showed characteristics of binding to lymphocytes and monocytes, but not to thrombocytes. Twenty-three mAbs in Group IV showed specific reactivity to lymphocytes, monocytes, and thrombocytes. Two mAbs (IC3 and IE9) in Group IV reacted with most of PBMC.

Inhibitory Effects of Chicken Egg Yolk Antibody on Infection of Escherichia coli in Macrophage

  • Lee, Jin-Ju;Kim, Dong-Hyeok;Lim, Jeong-Ju;Kim, Dae-Geun;Kim, Gon-Sup;Min, Won-Gi;Lee, Hu-Jang;Rhee, Man-Hee;Chang, Hong-Hee;Kim, Suk
    • Journal of agriculture & life science
    • /
    • v.46 no.2
    • /
    • pp.107-114
    • /
    • 2012
  • The present study evaluated the potential use of immunoglobulin prepared from egg yolk of chickens immunized with Escherichia coli K88 (IgY-Ec) in the control of E. coli K88 infection in RAW 264.7 murine macrophage. The binding activity of IgY-Ec against E. coli K88 surface protein was more specific and increased than control IgY. In infection assay of E. coli in macrophage, the specific IgY-Ec to E. coli K88 remarkably inhibited the phagocytic activity comparing to nonspecific IgY (p<0.001). In adherence assay, bacterial adhesion on macrophage cells was definitely reduced by preincubation of IgY-Ec compared with nonspecific IgY (p<0.05). These findings suggested that IgY-Ec have the protective effects against pathogens and IgY-based diets may have potential benefits for preventing or treating various infections in domestic animals.

Suppression of the Toll-like receptors 3 mediated pro-inflammatory gene expressions by progenitor cell differentiation and proliferation factor in chicken DF-1 cells

  • Hwang, Eunmi;Kim, Hyungkuen;Truong, Anh Duc;Kim, Sung-Jo;Song, Ki-Duk
    • Journal of Animal Science and Technology
    • /
    • v.64 no.1
    • /
    • pp.123-134
    • /
    • 2022
  • Toll-like receptors (TLRs), as a part of innate immunity, plays an important role in detecting pathogenic molecular patterns (PAMPs) which are structural components or product of pathogens and initiate host defense systems or innate immunity. Precise negative feedback regulations of TLR signaling are important in maintaining homeostasis to prevent tissue damage by uncontrolled inflammation during innate immune responses. In this study, we identified and characterized the function of the pancreatic progenitor cell differentiation and proliferation factor (PPDPF) as a negative regulator for TLR signal-mediated inflammation in chicken. Bioinformatics analysis showed that the structure of chicken PPDPF evolutionarily conserved amino acid sequences with domains, i.e., SH3 binding sites and CDC-like kinase 2 (CLK2) binding sites, suggesting that relevant signaling pathways might contribute to suppression of inflammation. Our results showed that stimulation with polyinosinic:polycytidylic acids (Poly [I:C]), a synthetic agonist for TLR3 signaling, increased the mRNA expression of PPDPF in chicken fibroblasts DF-1 but not in chicken macrophage-like cells HD11. In addition, the expression of pro-inflammatory genes stimulated by Poly(I:C) were reduced in DF-1 cells which overexpress PPDPF. Future studies warrant to reveal the molecular mechanisms responsible for the anti-inflammatory capacity of PPDPF in chicken as well as a potential target for controlling viral resistance.

Expression and regulation of avian beta-defensin 8 protein in immune tissues and cell lines of chickens

  • Rengaraj, Deivendran;Truong, Anh Duc;Lillehoj, Hyun S.;Han, Jae Yong;Hong, Yeong Ho
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.9
    • /
    • pp.1516-1524
    • /
    • 2018
  • Objective: Defensins are a large family of antimicrobial peptides and components of the innate immune system that invoke an immediate immune response against harmful pathogens. Defensins are classified into alpha-, beta-, and theta-defensins. Avian species only possess beta-defensins (AvBDs), and approximately 14 AvBDs (AvBD1-AvBD14) have been identified in chickens to date. Although substantial information is available on the conservation and phylogenetics, limited information is available on the expression and regulation of AvBD8 in chicken immune tissues and cells. Methods: We examined AvBD8 protein expression in immune tissues of White Leghorn chickens (WL) by immunohistochemistry and quantitative reverse transcription-polymerase chain reaction (RT-qPCR). In addition, we examined AvBD8 expression in chicken T-, B-, macrophage-, and fibroblast-cell lines and its regulation in these cells after lipopolysaccharide (LPS) treatment by immunocytochemistry and RT-qPCR. Results: Our results showed that chicken AvBD8 protein was strongly expressed in the WL intestine and in macrophages. AvBD8 gene expression was highly upregulated in macrophages treated with different LPS concentrations compared with that in T- and B-cell lines in a time-independent manner. Moreover, chicken AvBD8 strongly interacted with other AvBDs and with other antimicrobial peptides as determined by bioinformatics. Conclusion: Our study provides the expression and regulation of chicken AvBD8 protein in immune tissues and cells, which play crucial role in the innate immunity.

Expression Analysis of Chicken Interleukin-34(IL-34) for Various Pathogenic Stimulations (주요 병원균 자극에 의한 닭의 Interleukin-34 발현 분석 비교)

  • Hong, Yeong Ho
    • Korean Journal of Poultry Science
    • /
    • v.48 no.3
    • /
    • pp.111-122
    • /
    • 2021
  • Recently, interleukin 34 (IL-34) was identified as the second functional ligand for macrophage colony-stimulating factor receptor (M-CSFR). IL-34 functions similarly to M-CSF through its binding to the M-CSFR. There is still insufficient information on IL-34 in chickens, which has until now been reported only through predicted sequences and not through experimental research. Thus, to confirm its expression and to determine its potent biological activity, several chicken lines and cell lines were used. Cloning of recombinant chicken IL-34 and M-CSF genes was performed to investigate their modulatory effects on proinflammatory cytokine expression in vitro. The expression levels of IL-34, M-CSF, and M-CSFR genes were upregulated in broiler chickens with leg dysfunction (cause unknown). However, IL-34 was downregulated in most pathogen-stimulated tissues. M-CSFR expression was enhanced by recombinant IL-34 and M-CSF proteins in vitro. IFN-γ expression was enhanced by recombinant IL-34, but not by M-CSF. However, IL-12 expression was not regulated in any of the treated cells, and IL-1β was decreased in all tissues. These results indicate that IL-34 and M-CSF have roles in both the classical and alternative macrophage activation pathways. Collectively, our findings demonstrate the expression of IL-34 in chickens for pathogenic trials, both in vitro and in vivo. Our results suggest that the IL-34 protein plays a role in both pro- and anti-inflammatory functions in macrophages. Therefore, further research is needed to determine the cytokines or chemokines that can be induced by IL-34 and to further elucidate the functions of IL-34 in the inflammatory pathway.

Activation of Macrophages by GLB, a Protein-polysaccharide of the Growing Tips of Ganoderma Lucidum (영지버섯 생장점 단백다당체 GLB의 대식세포 활성화 효과)

  • Oh, Jung-Yeon;Cho, Kyung-Joo;Chung, Soo-Hyun;Kim, Jin-Hyang;Lillehoj, H.S.;Chung, Kyeong-Soo
    • YAKHAK HOEJI
    • /
    • v.42 no.3
    • /
    • pp.302-306
    • /
    • 1998
  • In the previous study we described the antitumor activity of GLB, a protein-polysaccharide fraction of the growing tips of Ganoderma lucidum, against sarcoma 180 solid tu mor in ICR mice. In this study we investigated the stimulatory activity of GLB on macrophages. When analyzed using a flow cytometer, GLB ($100{\mu}g/ml$) was found to increase the phagocytic activity of the BALB/c mouse peritoneal macrophages as well as chicken macrophage BM2CL cells against FITC-labeled C.albicans by 55.2% and 21.2%, respectively. GLB also increased the spreading and the expression of MHC class II molecules of BM2CL cells as well as the mouse peritoneal macrophages. From these results, it is clear that GLB is a strong stimulator to the macrophages.

  • PDF

Chicken novel leukocyte immunoglobulin-like receptor subfamilies B1 and B3 are transcriptional regulators of major histocompatibility complex class I genes and signaling pathways

  • Truong, Anh Duc;Hong, Yeojin;Lee, Janggeun;Lee, Kyungbaek;Tran, Ha Thi Thanh;Dang, Hoang Vu;Nguyen, Viet Khong;Lillehoj, Hyun S.;Hong, Yeong Ho
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.5
    • /
    • pp.614-628
    • /
    • 2019
  • Objective: The inhibitory leukocyte immunoglobulin-like receptors (LILRBs) play an important role in innate immunity. The present study represents the first description of the cloning and structural and functional analysis of LILRB1 and LILRB3 isolated from two genetically disparate chicken lines. Methods: Chicken LILRB1-3 genes were identified by bioinformatics approach. Expression studies were performed by transfection, quantitative polymerase chain reaction. Signal transduction was analyzed by western blots, immunoprecipitation and flow cytometric. Cytokine levels were determined by enzyme-linked immunosorbent assay. Results: Amino acid homology and phylogenetic analyses showed that the homologies of LILRB1 and LILRB3 in the chicken line 6.3 to those proteins in the chicken line 7.2 ranged between 97%-99%, while homologies between chicken and mammal proteins ranged between 13%-19%, and 13%-69%, respectively. Our findings indicate that LILRB1 and LILRB3 subdivided into two groups based on the immunoreceptor tyrosine-based inhibitory motifs (ITIM) present in the transmembrane domain. Chicken line 6.3 has two ITIM motifs of the sequence LxYxxL and SxYxxV while line 7.2 has two ITIM motifs of the sequences LxYxxL and LxYxxV. These motifs bind to SHP-2 (protein tyrosine phosphatase, non-receptor type 11) that plays a regulatory role in immune functions. Moreover, our data indicate that LILRB1 and LILRB3 associated with and activated major histocompatibility complex (MHC) class I and ${\beta}2-microglobulin$ and induced the expression of transporters associated with antigen processing, which are essential for MHC class I antigen presentation. This suggests that LILRB1 and LILRB3 are transcriptional regulators, modulating the expression of components in the MHC class I pathway and thereby regulating immune responses. Furthermore, LILRB1 and LILRB3 activated Janus kinase2/tyrosine kinase 2 (JAK2/TYK2); signal transducer and activator of transcription1/3 (STAT1/3), and suppressor of cytokine signaling 1 genes expressed in Macrophage (HD11) cells, which induced Th1, Th2, and Th17 cytokines. Conclusion: These data indicate that LILRB1 and LILRB3 are innate immune receptors associated with SHP-2, MHC class I, ${\beta}2-microglobulin$, and they activate the Janus kinase/signal transducer and activator of transcription signaling pathway. Thus, our study provides novel insights into the regulation of immunity and immunopathology.

The Bactericidal Effect of High Temperature Is an Essential Resistance Mechanism of Chicken Macrophage against Brucella abortus Infection

  • Arayan, Lauren Togonon;Reyes, Alisha Wehdnesday Bernardo;Hop, Huynh Tan;Xuan, Huy Tran;Baek, Eun Jin;Min, Wongi;Kim, Suk
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.10
    • /
    • pp.1837-1843
    • /
    • 2017
  • Knowledge of avian host responses to brucellosis is critical to understanding how birds resist this infection; however, this mechanism is not well established. On the other hand, temperature has a major involvement in the physiology of living organisms, and cell death induced by heat is attributed to protein denaturation. This study demonstrates the direct bactericidal effect of a high temperature ($41^{\circ}C$) on Brucella abortus that resulted in the gradual reduction of intracellular bacteria and inhibited bacterial growth within avian macrophage HD11 in an increasing period of time. On the other hand, this study also revealed that high temperature does not affect the rate of bacterial uptake, as confirmed by the bacterial adherence assay. No significant difference was observed in the expression of target genes between infected and uninfected cells for both temperatures. This study suggests the susceptibility of B. abortus to bacterial death under a high temperature with an increased period of incubation, leading to suppression of bacterial growth.

Immunomodulation by Bioprocessed Polysaccharides from Lentinus edodes Mycelia Cultures with Rice Bran in the Salmonella Gallinarum-infected Chicken Macrophages (Salmonella Gallinarum 감염닭의 대식세포에서 표고버섯 균사체 발효 미강생물전환소재에 의한 면역조절효과)

  • Lee, Hyung Tae;Lee, Sang Jong;Yoon, Jang Won
    • Journal of Food Hygiene and Safety
    • /
    • v.33 no.5
    • /
    • pp.383-388
    • /
    • 2018
  • In this study, we investigated the effect of bioprocessed polysaccharides (BPPs) from liquid culture of Lentinus edodes fungal mycelia containing rice bran (BPP-RB) on a chicken-derived macrophage cell line, HD-11, when infected with Salmonella Gallinarum, an etiological agent of fowl typhoid. Experimental results demonstrated water extract of BPP-RB did not show growth inhibitory effects on S. Gallinarum 277. Protein expression profiles were also not altered by its treatment. Nonetheless, it could (i) enhance phagocytic activity of HD-11 cells, (ii) activate transcriptional expression of Th1-type cytokines such as tumor necrosis factor-${\alpha}$ and interleukin $(IL)-1{\beta}$, iNOS, as well as an immunosuppressive cytokine IL-10, and (iii) negatively regulate Th2-type cytokines such as IL-4 and IL-6. Together results suggest that BPP-RB may be applicable for preventing fowl typhoid or other Salmonella infections in poultry farms as a potential feed additive.

Exosome-mediated delivery of gga-miR-20a-5p regulates immune response of chicken macrophages by targeting IFNGR2, MAPK1, MAP3K5, and MAP3K14

  • Yeojin Hong;Jubi Heo;Suyeon Kang;Thi Hao Vu;Hyun S. Lillehoj;Yeong Ho Hong
    • Animal Bioscience
    • /
    • v.36 no.6
    • /
    • pp.851-860
    • /
    • 2023
  • Objective: This study aims to evaluate the target genes of gga-miR-20a-5p and the regulated immune responses in the chicken macrophage cell line, HD11, by the exosome-mediated delivery of miR-20a-5p. Methods: Exosomes were purified from the chicken macrophage cell line HD11. Then, mimic gga-miR-20p or negative control miRNA were internalized into HD11 exosomes. HD11 cells were transfected with gga-miR-20a-5p or negative control miRNA containing exosomes. After 44 h of transfection, cells were incubated with or without 5 ㎍/mL poly(I:C) for 4 h. Then, expression of target genes and cytokines was evaluated by quantitative realtime polymerase chain reaction. Results: Using a luciferase reporter assay, we identified that gga-miR-20a-5p directly targeted interferon gamma receptor 2 (IFNGR2), mitogen-activated protein kinase 1 (MAPK1), mitogen-activated protein kinase kinase kinase 5 (MAP3K5), and mitogen-activated protein kinase kinase kinase 14 (MAP3K14). Moreover, the exosome-mediated delivery of gga-miR-20a-5p successfully repressed the expression of IFNGR2, MAPK1, MAP3K5, and MAP3K14 in HD11 cells. The expressions of interferon-stimulated genes (MX dynamin like GTPase 1 [MX1], eukaryotic translation initiation factor 2A [EIF2A], and oligoadenylate synthase-like [OASL]) and proinflammatory cytokines (interferon-gamma [IFNG], interleukin-1 beta [IL1B], and tumor necrosis factor-alpha [TNFA]) were also downregulated by exosomal miR-20a-5p. In addition, the proliferation of HD11 cells was increased by exosomal miR-20a-5p. Conclusion: The exosome-mediated delivery of gga-miR-20a-5p regulated immune responses by controlling the MAPK and apoptotic signaling pathways. Furthermore, we expected that exosomal miR-20a-5p could maintain immune homeostasis against highly pathogenic avian influenza virus H5N1 infection by regulating the expression of proinflammatory cytokines and cell death.