• Title/Summary/Keyword: Chevron

Search Result 213, Processing Time 0.025 seconds

An Experimental Study on Evaperation Heat Transfer and Pressure Drop in Plated cleat Exchangers with Different Chevron Angles (판형열교환기의 세브론각에 따른 증발 열전달특성 및 압력강하에 대한 실험적 연구)

  • Kim, Yun-Ho;Lee, Gyu-Jeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.2
    • /
    • pp.269-277
    • /
    • 2002
  • Experiments on the evaporation heat transfer and pressure drop in the brazed type plate heat exchangers were performed using refrigerants R410A and R22. To investigate the geometric effect, plate heat exchangers with the same pitch and height but different 45$^{\circ}$, 35$^{\circ}$and 20$^{\circ}$chevron angles are used. Tests were conducted fur the ranges of the mass flux of refrigerant from 13 kg/m$^2$s to 34 kg/m$^2$s, the evaporation temperatures of 15$^{\circ}C$, 1$0^{\circ}C$ and 5$^{\circ}C$, vapor quality from 0.15 to 0.95 and the heat flux from 2.5 kW/m$^2$to 8.5 kW/m$^2$. The evaporation heat transfer coefficients and pressure drops were measured. Most of flow patterns are in the chum flow regime and become close to the annular flow for increasing the mass flux and the vapor quality. The heat transfer coefficient increases with increasing the evaporation temperature at a given mass flux in all plate heat exchangers. Also, the pressure drop increases with increasing the mass flux and the quality and decreasing the evaporation temperature and the chevron angle.

CFD Analysis for the Flow Phenomena of the Narrow Channels in Plate Heat Exchanger for Intercooler (인터쿨러용 판형열교환기 내부유로의 유동현상에 관한 전산유체해석)

  • 윤천석;한승한
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.2
    • /
    • pp.91-100
    • /
    • 2004
  • Plate heat exchangers (PHE) have been widely used in different industrial applications, because of high heat transfer efficiency per unit volume. Basic study is performed for PHE to the application of intercooler in automobile. In order to understand the flow phenomena in the plate heat exchanger, a channel which was formed by the upper and lower plate in single plate was considered as calculation domains. Because chevrons attached on the upper plate are brazed with chevrons attached on the lower plate, the flow channel has very complex configuration. This complex geometry was analyzed by Fluent. In order to validate this methodology the proper experimental and theoretical data are collected and compared with numerical results. Finally, due to the lack of experimental values for PHE to the application of intercooler, various chevron angles and air velocities at inlet were tested in terms of physical phenomena. From this point of view, results of velocity vector, path lines, static pressure, heat flux, heat transfer coefficient, and Nusselt number are physically reasonable and accepted for the solutions. From these results, the correlations for pressure drop and Nusselt number with respect to chevron angle and Reynolds number in specific PHE are obtained for the design purpose. Thus, the methodology of the flow analysis in the full geometry of the channel was established for the predictions of performance in plate heat exchanger.

Study on Design Factor and Design-code Development for Plate Type Heat Exchangers (판형 열교환기의 주요 설계인자와 설계프로그램 개발에 관한 고찰)

  • Ko, Jea-Hyun;Park, Kweon-Ha;Song, Young-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.8
    • /
    • pp.1003-1009
    • /
    • 2012
  • Heat exchanger has been widely used in the industry which needs energy transport, and the application of the plate type heat exchanger having high efficiency has been greatly increased. In this study main design parameters are analyzed and new equations are induced. The induced formulation was compared with a commercial program in order to design an optimal heat exchanger. The equations of heat transfer coefficient and pressure drop for Chevron angles are introduced as functions of Reynolds number. The program implemented the equations is tested with Chevron angle variation. The results show that the convective heat transfer coefficients take errors within 8% and the pressure drops have errors within 5% in the analysis conditions.

Theoretical Study on the Heat Transfer Performance in the Various Type Plate Heat Exchanger (다양한 형상의 판형 열교환기 열전달 성능에 관한 해석적 연구)

  • Oh, Jae-Kyeong;An, Sung-Kook;Nam, Snag-Chul;Cho, Hong-Hyun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.8
    • /
    • pp.636-645
    • /
    • 2012
  • The performance of various type plate exchangers with different chevron angle, dimple size and arrangement was analysed by using Ansys v13.0. Heat transfer performance, pressure drop and flow patten of plate heat exchanger were investigated according to mass flow ratio investigated and compared. As a result, the $60^{\circ}$-chevron type plate heat exchanger showed the highest heat transfer performance but pressure drop was relatively high. The efficiency of $45^{\circ}$-chevron type plate heat exchanger showed the best performance in considering of heat transfer performance and pressure drop simultaneously. Among dimple type plate heat exchangers, the highest heat transfer performance was shown in a dim_zigzag type plate heat exchanger but pressure drop was very high. Besides, the dim_upsize plate heat exchanger showed very low pressure drop.

Performance Evaluation of Plate Heat Exchanger with Chevron Angle Variations (쉐브론 각도변화에 따른 판형 고온 용액열교환기의 성능평가)

  • Kwon, Oh-Kyung;Cha, Dong-An;Yun, Jae-Ho;Kim, Hyo-Sang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.7
    • /
    • pp.520-526
    • /
    • 2009
  • The objectives of this paper are to measure the heat transfer and pressure drop of the plate heat exchangers for absorption system applications. Three types of plate heat exchangers with different chevron angles are tested in the present experiment. Heat transfer and pressure drop performance of plate heat exchangers are measured in various operating conditions, and compared each other. The results show that the heat transfer rate of high theta ($120^{\circ}$) and mixed theta plate heat exchanger increases about 118% and 98% at the solution flow rate 350 kg/h compared to that of low theta ($60^{\circ}$), respectively. The effectiveness of high theta was evaluated about $0.53{\sim}0.85$ in this experimental range. The experimental correlations of the Nu and f were developed with error bands of ${\pm}7%$ and ${\pm}12%$.

Effects of Flow Resonance on Heat Transfer Enhancement and Pressure Drop in a Plate Heat Exchanger (유동공진이 판형 열교환기의 열전달 향상과 압력강하에 미치는 영향)

  • Han Sang Kyu;Kang Byung Ha
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.2
    • /
    • pp.165-172
    • /
    • 2005
  • Heat transfer enhancement of three types of brazed plate heat exchangers has been evaluated experimentally. The effects of flow resonance in a plate heat exchanger on the heat transfer rate and pressure drop have been investigated in a wide range of mass flow rates in detail. The problem is of particular interest in the innovative design of a plate heat exchanger by flow resonance. The results obtained indicate that both heat transfer coefficient and pressure drop are increased as mass flow rate is increased, as expected. It is also found that the heat transfer enhancement is increased with an increase in the plate pitch, while the heat transfer is decreased with a decrease in the chevron angle. Pressure drop also increased with an increase in the plate pitch and with a decrease in the chevron angle. Heat transfer enhancement in the plate heat exchangers is maximized by flow resonance and the resonance frequency of the present plate heat exchangers is found to be in the range of $10~15\;Hz$.

An easy-to-use design procedure for multipass plate heat exchangers based on the performance plots (성능선도에 의한 다통로 판형열교환기의 간이설계법)

  • 유호선;이근휘;방보청
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.2
    • /
    • pp.250-261
    • /
    • 1999
  • Based on a set of performance plots relating the design variables to the imposed conditions, an easy-to-use and versatile design procedure for chevron-type multipass plate heat exchangers is developed. In order for the present procedure to cover multipass with unequal passes and non-unity ratio of heat capacity rate, each stream number of transfer unit is adopted as the basic design variable instead of the exchanger number of transfer unit. It is found that there exists a unique relation between the stream and exchanger number of transfer units regardless of the chevron angle and the plate length. In addition, for a given value of the pressure drop the heat transfer area per unit mass flow rate can be expressed in terms of the stream number of transfer unit only. These two relationships in the form of simple plots constitute the framework of design. The sample results in comparison with the available data indicate that the present procedure includes the previous ones as a subset, and that every design method is affected essentially by the selection of specific correlations for the heat transfer coefficient and the friction factor.

  • PDF

Evaluation of Removal Efficiency of Water Contents using Inertial Impaction Separator (관성 충돌 방식의 액적 분리장치의 수분제거효율 평가)

  • Lee, Sin Young;Hong, Won Seok;Shin, Wanho;Kim, Gyujin;Song, Dong Keun
    • Particle and aerosol research
    • /
    • v.9 no.1
    • /
    • pp.23-29
    • /
    • 2013
  • Inertial impaction type mist eliminators are the most effective instruments to separate mist from the gas. In this work, the effect of the horizontal chevron type mist eliminators is characterized experimentally. Droplet size distribution and evaluation of removal efficiency of the chevron type mist eliminators at different gas flows were investigated using an aerosol particle size analyzer and a portable aerosol spectrometer, respectively. The experimental investigations showed that the mist removal efficiency in these instruments is dependent in the droplet size, and the pressure drop is nil.

Bioabsorbable Screws Used in Hallux Valgus Treatment Using Proximal Chevron Osteotomy (무지외반증 환자의 근위 갈매기형 절골술에서 생체 흡수성 나사못을 이용한 고정)

  • Shin, Woo-Jin;Chung, Young-Woo;An, Ki-Yong;Seo, Jae-Woong
    • Journal of Korean Foot and Ankle Society
    • /
    • v.22 no.4
    • /
    • pp.181-183
    • /
    • 2018
  • Hallux valgus is a deformity that causes pain in the first metatarsophalangeal joint. Surgical methods are quite diverse and a range of osteotomies are used at the proximal and distal part of the metatarsal bone and proximal phalange. Fixation methods, such as plate, screw, K-wire, and others have been used in various ways. The fixation device is often removed with various side effects due to the fixation devices. In the case of instruments that are absorbed in vivo, these procedures are not necessary to remove and there is an advantage of not performing the second operation. Three patients were treated, in which a proximal chevron osteotomy was used with a bioabsorbable screw (K-$MET^{TM}$; U&I Corporation).

Numerical investigation of a plate-type steam generator for a small modular nuclear reactor

  • Kang, Jinhoon;Bak, Jin-Yeong;Lee, Byung Jin;Chung, Chang Kyu;Yun, Byongjo
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.3140-3153
    • /
    • 2022
  • A numerical feasibility study was conducted to investigate the thermal-hydraulic characteristics of a steam generator with corrugated plates for a small modular reactor. Accordingly, a one-dimensional thermal-hydraulic analysis code was developed based on the existing state-of-the-art thermal-hydraulic models and correlations for corrugated plate heat exchangers. Subsequently, the pressure loss, heat transfer, and instability characteristics of the steam generator with corrugated plates were investigated according to the chevron angle and mass flux. Additionally, the characteristics of rectangular and disk-type corrugated plate steam generators with equivalent heat transfer areas were analyzed. The steam generator with disk-type corrugated plates exhibited better performance in terms of pressure loss and heat transfer rate than the rectangular type. In addition, when the mass flux decreased from the onset of boiling points, reverse gradients of the total pressure change were observed in both types. Thus, it was confirmed that Ledinegg instability could occur in the steam generator with corrugated plates. However, it was dependent on the chevron angle, and the optimal chevron angle to minimize instability was 45° under the conditions of the present analysis.