• Title/Summary/Keyword: Cheonggukjang

Search Result 193, Processing Time 0.019 seconds

The Effect of $\gamma$-PGA on NC/Nga Mice, a Mouse Model for Mite Antigen-induced Atopic Dermatitis (집먼지 진드기 항원으로 아토피 피부염을 유발한 NC/Nga 생쥐에 미치는 $\gamma$-PGA의 효과)

  • Jang, Soon-Nam;Kim, Kum-Lan;Yun, Mi-Young;Kang, Sang-Mo
    • Microbiology and Biotechnology Letters
    • /
    • v.38 no.1
    • /
    • pp.53-63
    • /
    • 2010
  • As one of the mucous components of Cheonggukjang, traditional fermented soybean paste, $\gamma$-PGA is a natural substance with diverse functions. In this paper, an in-vivo experiment has been performed using NC/Nga mice in order to find out the efficacy of $\gamma$-PGA in human atopic dermatitis. The NC/Nga mice with BMAC-induced atopic dermatitis were administered $\gamma$-PGA (PGA-HM) with 300 kDa and low-molecular $\gamma$-PGA (PGA-LM), respectively. As a result, a significant decrease in clinical skin severity score was detected in the group that was administered PGA-LM. In terms of serum IgE levels, a significant decline was observed in PGA-LM, compared to the control group. The serum IgG1 levels also decreased more in PGA-LM than in the control group. However, no significant difference was observed in both groups. To witness the induction of $CD4^+CD25^+foxp3^+$ Treg cells, mRNA was sampled from the back of PGA-HM- and PGA-LM-administered NC/Nga mice with atopic dermatitis. In terms of the production amount of foxp3 mRNA, which was measured in real-time PCR, the group that was administered PGA-LM was twice as high as the control group. According to a biopsy on the skin on the backs of the mice, the experimental group was also far lower than the control group in terms of epidermis thickness, mast cell infiltration and the number of $CCR3^+$ cells. Therefore, it has been confirmed that the atopic dermatitis symptoms decreased more in the PGA-LM-administered NC/Nga mice than the PGA-HM-administered group by facilitating $CD4^+CD25^+foxp3^+$ Treg cells and suppressing the activity of eosinophils and production of IgE and pro-inflammatory cytokines.

α-Glucosidase inhibitory activity and protease characteristics produced by Bacillus amyloliquefaciens (Bacillus amyloliquefaciens로부터 생산된 protease 특성 및 α-glucosidase 저해활성)

  • Lee, Rea-Hyun;Yang, Su-Jin;Hwang, Tae-Young;Chung, Shin-Kyo;Hong, Joo-Heon
    • Food Science and Preservation
    • /
    • v.22 no.5
    • /
    • pp.727-734
    • /
    • 2015
  • In this study, three GRAS (generally recognized as safety) strain was isolated from Doenjang and Cheonggukjang and identified as a protease-producing microorganism, following the appearance of a clear zone around its colony when cultured on a medium containing skim milk. Based on an analysis of the nucleotide sequence of 16S ribosomal RNA, the strains wereas identified as Bacillus amyloliquefaciens and wereas therefore named Bacillus amyloliquefaciens CDD5, Bacillus amyloliquefaciens CPD4, and Bacillus amyloliquefaciens CGD3. Here, we analyzed the protease and ${\alpha}$-glucosidase inhibitory activities of the three B. amyloliquefaciens strains. Among the isolated strains, B. amyloliquefaciens CGD3 exhibited the highest protease activity (9.21 U/mL, 24 hr). The protease activities of B. amyloliquefaciens CDD5 and B. amyloliquefaciens CPD4 reached 1.14 U/mL and 8.02 U/mL, respectively, at 48 hr. The proteases from the three B. amyloliquefaciens strains showed the highest activities within a pH range of 8.0-9.0 at $50^{\circ}C$, and casein was found to be the preferred substrate on evaluating enzyme activity in the substrate specificity assay. The B. amyloliquefaciens strains exhibited maximal growth when the nutrient broth medium had an initial pH within the range of 5.0-10.0, 6-9% sodium chloride (NaCl), and 5% glucose. B. amyloliquefaciens CDD5 exhibited a low ${\alpha}$-glucosidase inhibition rate (5.32%), whereas B. amyloliquefaciens CPD4 and B. amyloliquefaciens CGD3 exhibited relatively higher inhibition rates of 96.89% and 97.55%, respectively.

Metagenomic Analysis of Jang Using Next-generation Sequencing: A ComparativeMicrobial Study of Korean Traditional Fermented Soybean Foods (차세대 염기서열 분석을 활용한 장류의 메타지놈 분석 : 한국 전통 콩 발효식품에 대한 미생물 비교 연구)

  • Ranhee Lee;Gwangsu Ha;Ho Jin Jeong;Do-Youn Jeong;Hee-Jong Yang
    • Journal of Life Science
    • /
    • v.34 no.4
    • /
    • pp.254-263
    • /
    • 2024
  • Korean jang is a food made using fermented soybeans, and the typical products include gochujang (GO), doenjang (DO), cheonggukjang (CH), and ganjang (GA). In this study, 16S rRNA metagenome analysis was performed on a total of 200 types of GO, DO, CH, and GA using next-generation sequencing to analyze the microbial community of fermented soybean foods and compare taxonomic (biomarker) differences. Alpha diversity analysis showed that in the CHAO index, the species richness index tended to be significantly higher compared to the DO and GA groups (p<0.001). The results of the microbial distribution analysis of the GO, DO, CH, and GA products showed that at the order level, Bacillales was the most abundant in the GO, DO, and CH groups, but Lactobacillales was most abundant in the GA group. Linear discriminant analysis effect (LEfSe) analysis was used to identify biomarkers at the family and species levels. Leuconostocaceae, Thermoactinomycetaceae, Bacillaceae, and Enterococcaceae appeared as biomarkers at the family level, and Bacillus subtilis, Kroppenstedtia sanguinis, Bacillus licheniformis, and Tetragenococcus halophilus appeared at the species level. Permutational multivariate analysis of variance (PERMANOVA) analysis showed that there was a significant difference in the microbial community structure of the GO, DO, CH, and GA groups (p=0.001), and the microbial community structure of the GA group showed the greatest difference. This study clarified the correlation between the characteristics of Korean fermented foods and microbial community distribution, enhancing knowledge of microorganisms participating in the fermentation process. These results could be leveraged to improve the quality of fermented soybean foods.