• 제목/요약/키워드: Chemostat

검색결과 44건 처리시간 0.027초

혐기성소화의 물질분해 특성에 미치는 CO2 분압의 영향 (Effects of CO2 partial pressure on the characteristics of organic matter degradation in anaerobic digestion)

  • 김영철;엄태규;이무강;차기철;노이케 타쯔야
    • 상하수도학회지
    • /
    • 제10권4호
    • /
    • pp.111-118
    • /
    • 1996
  • Effects of $CO_2$ partial pressure($pCO_2$) on the characteristics of methane production rate and organic matter degradation in anaerobic digestion were investigated by using anaerobic chemostat type reactors at $35{\pm}1^{\circ}C$, at the HRT of 7days. The $pCO_2$ of the reactors was controlled in the range from 0.1 to 0.8 atm. Since the $pCO_2$ in an uncontrolled condition was about 0.4atm, $N_2$ was added for the reactors controlled of $pCO_2$ of between 0.1 and 0.4atm. At $pCO_2$ of 0.5 atm, the methane production rate was approximately 20% more that in an uncontrolled condition of $pCO_2$. Based on the carbon mass balance, it was concluded that methane production was related to the increment of removal organic carbon and consumption of $CO_2$. At $pCO_2$ of 0.5atm, the methane production by the increment of removal substrates increased 13.6%, on the orther hand, hand, the methane production by the conversion of $CO_2$ to methane increased 6.4%.

  • PDF

혐기성소화의 물질분해 및 메탄생성에 대한 $CO_2$ 분압의 영향 (Effects of $PCO_2$ on Methane Production Rate and Matter degradation in Anaerobic Digestion)

  • 이국의;김영철;서명교
    • 한국환경보건학회지
    • /
    • 제26권2호
    • /
    • pp.59-66
    • /
    • 2000
  • Effects of carbon dioxide partial pressure(PCO2) on bacterial population, methane production rate and matter degradation in anaerobic digestion were investigated by using anaerobic chemostat type reactors at 35$\pm$1$^{\circ}C$, at the HRT of 7 days. At PCO2 of 0.5 atm, the specific methane production rate and specific substrate removal rate reached the maximum rates. The methane production rates in the reactors fed by mixed substrate were 26% higher than those obtained under the controlled condition. The number of acetate consuming methanogenic bacteria enumerated by the MPN(most probable number) method, decreased when PCO2 exceeded 0.7 atm. Hydrogen consuming methanogenic bacteria and homoacetogenic bacteria increased as PCO2 increased from 0.1 to 0.6 atm, however, decreased slightly at PCO2 above 0.7 atm. The number of hydrolytic bacteria, sulfate-reducing bacteria and H2-producing acetogenic bacterial were not much influenced by the change of PCO2. The potential methanogenic activity reached the maximum at PCO2 0.5 atm, however, decreased significantly when PCO2 exceeded 0.7 atm, would depend on free PCO2 concentration in solution.

  • PDF

활성슬러지내 Nocardia 거품현상 진단을 위한 Fatty Acid Methyl Ester (FAME) 기술 (Fatty Acid Methyl Ester (FAME) Technology for Diagnosing Nocardia Foaming in Activated Sludge)

  • 이재우;김일규;이석헌;안규홍
    • 상하수도학회지
    • /
    • 제18권4호
    • /
    • pp.480-485
    • /
    • 2004
  • Fatty acid methyl ester (FAME) technology was evaluated as a monitoring tool for quantification of Nocardia amarae causing a nuisance foaming problem in activated sludge process. The identified signature peak was 19:1 alcohol as a reliable unique peak to N. amarae. Chemostat study revealed that the distribution and quantity of fatty acid peaks were dependent on the growth stage of Nocardia. The FAME results were similar for two relatively high dilution rates; however, the amounts of signature peaks extracted from the 4 and 6 day cultures were significantly higher. This dependence of signature peaks on the physiological state of the organism may be a useful information to assess the health of microbial populations in activated sludge. A laboratory scale batch foaming potential experiment provided a critical foaming level depending on Nocardia population. This critical Nocardia level determined in this study was in terms of either the threshold filament intersections number or the threshold signature FAME amount. The threshold peak area of signature FAME (19:1 alcohol) and corresponding filament counts were 430PA/mg VSS and $1.45{\times}10^6$ intersections/g VSS, respectively. The threshold signature FAME level could be effectively applied as a criterion for diagnosing foam occurrence in activated sludge system.

동물세포 대량배양에 의한 Erythropoeitin(EPO) 생산에 관한 고찰 (System Analysis for Mass Cultivation of Mammalian Cells to Produce Erythropoeitin(EPO))

  • 이현용
    • KSBB Journal
    • /
    • 제4권1호
    • /
    • pp.34-39
    • /
    • 1989
  • 본 논문은 동물 세포의 대량 배양을 위해 연속 공법 방식인 Perfusion Continuous System을 도입해 의약적으로 중요한 EPO의 생산을 위한 생물 공학적인 자료들을 제고하고 있다. 이 System은 세포 증식 속도를 배지의 Perfusion 속도로 변화시킴으로써 조절시킬 수 있는 산소 소비속도와 밀접한 상관관계가 있음을 입증하며 이는 세포수의 직접 측정에 따른 오차 및 방법상의 문제를 정학히 측정할 수 있는 간접 변수, 즉 산소소비속도를 이용함으로써 제거할 수 있다. 특히 이 산소소비속도와 세포 성장 관계로 model로써 세포 증식을 예측함과 동시에 동물 세포 대량 배양을 위한 scale-up의 중요한 기초자료가 될 것이다. 지금까지 발표되지 않았던 동물 세포의 glucose에 대한 True growth yield와 maintenance coefficient값들의 측정은 동물 세포 성자관 유용 물질 생산을 위한 중요한 수율적 자료가 된다.한편 이 결과는 지금까지 미생물이나 광합성에서만 적용되었던 yield model이 Eukaryotes에서도 응용될 수 있음을 증명하고 있다. 이와 같이 perfusion system이 많은 장점을 갖고 있지만, 세포 성장에 따른 동력학적인 연구의 수행이 좀 더 요구되는 실정이며, 특히 Perfusion system을 설명할 수 있는 이론 및 cytostatic moel의 정립이 선행되어야 할 것이다.

  • PDF

Candida rugosa 변아주를 이용한 D-\beta-Hydroxybutyric Acid 발효공정의 최적화 (Optimization of D-\beta-hydroxybutyric Acid Fermentation Using a Mutant of Candida Rugosa IFO0750)

  • 경수현;신철수
    • 한국미생물·생명공학회지
    • /
    • 제28권6호
    • /
    • pp.355-360
    • /
    • 2000
  • Candida rugosa IFO0750의 UV-변이주를 제조하여 butyric acid를 D-$\beta$-hydroxybutyrin acid(이하 D-$\beta$-HBA)로 전환하는 데 이용하였다. 후보 변이주 중 활성이 가장 높은 Candida rugosa CM42를 이용하여 발효를 수행한 후 NMR 분석, polarimeter 분석 등을 통하여 생성된 물질이 D-$\beta$-HBA 임을 확인하였다. Chemostar 배양을 이용하여 D-$\beta$-HBA 발효 생산의 주요 영향인자를 분석하였으며, 균체의 활성을 나타내는 비생산성의 최대치는 균체의 비증식 속도를 0.06, 발효조 내의 glucose와 butyric acid의 농도를 각각 10g/L와 8.7 g/L로 각각 유지 할 때 얻어졌다. 회분식 배양 중에 glucose와 butyric acid를 공급하여 발효조 내의 glucose 및 butyric acid 농도를 최적조건으로 유지하는 fed-batch 발효를 수행하였다. 배양 180 시간 후에 D-$\beta$-HBA 농도가 약 12.4 g/L에 도달하였으며 회분식 발효에 비하여 4.7배 증가하였다.

  • PDF

Dynamic Modeling of Lactic Acid Fermentation Metabolism with Lactococcus lactis

  • Oh, Euh-Lim;Lu, Mingshou;Choi, Woo-Joo;Park, Chang-Hun;Oh, Han-Bin;Lee, Sang-Yup;Lee, Jin-Won
    • Journal of Microbiology and Biotechnology
    • /
    • 제21권2호
    • /
    • pp.162-169
    • /
    • 2011
  • A dynamic model of lactic acid fermentation using Lactococcus lactis was constructed, and a metabolic flux analysis (MFA) and metabolic control analysis (MCA) were performed to reveal an intensive metabolic understanding of lactic acid bacteria (LAB). The parameter estimation was conducted with COPASI software to construct a more accurate metabolic model. The experimental data used in the parameter estimation were obtained from an LC-MS/MS analysis and time-course simulation study. The MFA results were a reasonable explanation of the experimental data. Through the parameter estimation, the metabolic system of lactic acid bacteria can be thoroughly understood through comparisons with the original parameters. The coefficients derived from the MCA indicated that the reaction rate of L-lactate dehydrogenase was activated by fructose 1,6-bisphosphate and pyruvate, and pyruvate appeared to be a stronger activator of L-lactate dehydrogenase than fructose 1,6-bisphosphate. Additionally, pyruvate acted as an inhibitor to pyruvate kinase and the phosphotransferase system. Glucose 6-phosphate and phosphoenolpyruvate showed activation effects on pyruvate kinase. Hexose transporter was the strongest effector on the flux through L-lactate dehydrogenase. The concentration control coefficient (CCC) showed similar results to the flux control coefficient (FCC).

정상 인체 세포로부터 조직 플라스미노겐 활성인자의 대량생산 (The Production of Tissue Type Plasminogen Activator from Normal Human Cell tine)

  • Lee, Hyeon-Yong;Kim, Geum-Soo
    • 한국미생물·생명공학회지
    • /
    • 제16권6호
    • /
    • pp.522-525
    • /
    • 1988
  • 무혈청 배지에 생산촉진제로 30$\mu$g/m$\ell$의 Heparin 을 첨가해 정상인의 섬유 세포로부터 상업적으로 tPA를 생산할 수 있는 방법의 개발과, 효과적인 tPA 생산을 위해 대량 배양에 적합한 무혈청 배지의 조성을 확립했다. 이 방법으로 연속배양 공법하에서 매일 1.1gram의 tPA가 생산될 수 있으며, 이 생산성은 tPA 생산 단가를 크게 낮출 분만 아니라 무혈청 배지의 사용으로 tPA의 순수 정제 과정을 크게 단축시킬 수 있다. 또한 이 세포에서 생산되는 tPA 는 fibrin lysis 시험결과 섬유질 분해능력이 높음이 입증되었으며, ELISA결과와도 상충했다.

  • PDF

Regulation of Branched-Chain, and Sulfur-Containing Amino Acid Metabolism by Glutathione during Ultradian Metabolic Oscillation of Saccharomyces cerevisiae

  • Sohn Ho- Yong;Kum Eun-Joo;Kwon Gi-Seok;Jin Ingnyol;Kuriyama Hiroshi
    • Journal of Microbiology
    • /
    • 제43권4호
    • /
    • pp.375-380
    • /
    • 2005
  • Autonomous ultradian metabolic oscillation (T$\simeq$50 min) was detected in an aerobic chemostat culture of Saccharomyces cerevisiae. A pulse injection of GSH (a reduced form of glutathione) into the culture induced a perturbation in metabolic oscillation, with respiratory inhibition caused by $H_2S$ burst pro-duction. As the production of $H_2S$ in the culture was controlled by different amino acids, we attempted to characterize the effects of GSH on amino acid metabolism, particularly with regard to branched chain and sulfur-containing amino acids. During stable metabolic oscillation, concentrations of intra-cellular glutamate, aspartate, threonine, valine, leucine, isoleucine, and cysteine were observed to oscil-late with the same periods of dissolved $O_2$ oscillation, although the oscillation amplitudes and maximal phases were shown to differ. The methionine concentration was stably maintained at 0.05 mM. When GSH (100 $\mu$M) was injected into the culture, cellular levels of branched chain amino acids increased dramatically with continuous $H_2S$production, whereas the cysteine and methionine concentrations were noticeably reduced. These results indicate that GSH-dependent perturbation occurs as the result of the promotion of branched chain amino acid synthesis and an attenuation of cysteine and methionine synthesis, both of which activate the generation of $H_2S$. In a low sulfate medium containing 2.5 mM sulfate, the GSH injections did not result in perturbations of dissolved $O_2$ NAD(P)H redox oscillations without burst $H_2S$ production. This suggests that GSH-dependent perturbation is intimately linked with the metabolism of branched-chain amino acids and $H_2S$ generation, rather than with direct GSH-GSSG redox control.

Isolation of $NH_4^+$-Tolerant Mutants of Actinobacillus succinogenes for Succinic Acid Production by Continuous Selection

  • Ye, Gui-Zi;Jiang, Min;Li, Jian;Chen, Ke-Quan;Xi, Yong-Lan;Liu, Shu-Wen;Wei, Ping;Ouyang, Ping-Kai
    • Journal of Microbiology and Biotechnology
    • /
    • 제20권8호
    • /
    • pp.1219-1225
    • /
    • 2010
  • Actinobacillus succinogenes, a representative succinicacid-producing microorganism, is seriously inhibited by ammonium ions, thereby hampering the industrial use of A. succinogenes with ammonium-ion-based materials as the pH controller. Therefore, this study isolated an ammonium-ion-tolerant mutant of A. succinogenes using a continuous-culture technique in which all the environmental factors, besides the stress (ammonium ions), were kept constant. Instead of operating the mutant-generating system as a nutrient-limited chemostat, it was used as a nutrient-unlimited system, allowing the cells to be continuously cultured at the maximum specific growth rate. The mutants were isolated on agar plates containing the acid-base indicator bromothymol blue and a high level of ammonium ions that would normally kill the parent strain by 100%. When cultured in anaerobic bottles with an ammonium ion concentration of 354 mmol/l, the mutant YZ0819 produced 40.21 g/l of succinic acid with a yield of 80.4%, whereas the parent strain NJ113 was unable to grow. When using $NH_4OH$ to buffer the culture pH in a 3.0 l stirredbioreactor, YZ0819 produced 35.15 g/l of succinic acid with a yield of 70.3%, which was 155% higher than that produced by NJ113. In addition, the morphology of YZ0819 changed in the fermentation broth, as the cells were aggregated from the beginning to the end of the fermentation. Therefore, these results indicate that YZ0819 can efficiently produce succinic acid when using $NH_4OH$ as the pH controller, and the formation of aggregates can be useful for transferring the cells from a cultivation medium for various industrial applications.

혐기성소화의 산발효과정에 있어서 동역학정수의 온도의존성 (Temperature Dependence of the Kinetic Constants in Acidogenesis Process of Anaerobic Digestion)

  • 차기철;정태영;유익근;김동진
    • 대한환경공학회지
    • /
    • 제29권7호
    • /
    • pp.839-845
    • /
    • 2007
  • 용해성 glucose를 기질로 하여 혐기성 산발효조에서 동역학정수에 대한 온도의존성을 검토하였다. 온도범위는 $15^{\circ}C$에서 $30^{\circ}C$이며, 포화정수$(K_s\upsilon)$와 증식수율(Y)은 온도의 상승에 따라 감소하였지만, 최대비기질소비속도$(\upsilon_{max})$는 증가하였다. 기질소비속도와 균체 증식속도의 온도보정인자$(Q_{10})$ 값은 각각 1.3에서 2.2, 1.5에서 2.2의 범위를 보였다. 최대비기질소비속도$(\upsilon_{max})$가 증식수율(Y) 보다 온도의 변화에 대하여 더 민감하였다. $20^{\circ}C$에서 $30^{\circ}C$까지의 온도영역에서 체류시간과 기질농도의 관계에 대한 시물레이션 모델은 $1/SRT={(6.53){\cdot}(1.038)^{T-20}{\cdot}(S/X)}/{(1.38){\cdot}(0.983)^{T-20}+(S/X)}$이다.