• 제목/요약/키워드: Chemometric assessment

검색결과 6건 처리시간 0.022초

Quality Assessment of Curcuma longa L. by Gas Chromatography-Mass Spectrometry Fingerprint, Principle Components Analysis and Hierarchical Clustering Analysis

  • Li, Ming;Zhou, Xin;Zhao, Yang;Wang, Dao-Ping;Hu, Xiao-Na
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권10호
    • /
    • pp.2287-2293
    • /
    • 2009
  • Gas Chromatography-Mass Spectrometry (GC-MS) fingerprint analysis, Principle Components Analysis (PCA), and Hierarchical Cluster Analysis (HCA) were introduced for quality assessment of Curcuma longa L. (C. longa). The GC-MS fingerprint method was developed and validated by analyzing 33 batches of samples of C. longa from different geographic locations. 18 chromatographic peaks were selected as characteristic peaks and their relative peak areas (RPA) were calculated for quantitative expression. Two principal components (PCs) were extracted by PCA. C. longa collected from Guizhou and Fujian were separated from other samples by PC1, capturing 71.83% of variance. While, PC2 contributed for their further separation, capturing 11.13% of variance. HCA confirmed the result of PCA analysis. Therefore, GC-MS fingerprint study with chemometric techniques provides a very flexible and reliable method for quality assessment of C. longa.

Discriminant analysis of grain flours for rice paper using fluorescence hyperspectral imaging system and chemometric methods

  • Seo, Youngwook;Lee, Ahyeong;Kim, Bal-Geum;Lim, Jongguk
    • 농업과학연구
    • /
    • 제47권3호
    • /
    • pp.633-644
    • /
    • 2020
  • Rice paper is an element of Vietnamese cuisine that can be used to wrap vegetables and meat. Rice and starch are the main ingredients of rice paper and their mixing ratio is important for quality control. In a commercial factory, assessment of food safety and quantitative supply is a challenging issue. A rapid and non-destructive monitoring system is therefore necessary in commercial production systems to ensure the food safety of rice and starch flour for the rice paper wrap. In this study, fluorescence hyperspectral imaging technology was applied to classify grain flours. Using the 3D hyper cube of fluorescence hyperspectral imaging (fHSI, 420 - 730 nm), spectral and spatial data and chemometric methods were applied to detect and classify flours. Eight flours (rice: 4, starch: 4) were prepared and hyperspectral images were acquired in a 5 (L) × 5 (W) × 1.5 (H) cm container. Linear discriminant analysis (LDA), partial least square discriminant analysis (PLSDA), support vector machine (SVM), classification and regression tree (CART), and random forest (RF) with a few preprocessing methods (multivariate scatter correction [MSC], 1st and 2nd derivative and moving average) were applied to classify grain flours and the accuracy was compared using a confusion matrix (accuracy and kappa coefficient). LDA with moving average showed the highest accuracy at A = 0.9362 (K = 0.9270). 1D convolutional neural network (CNN) demonstrated a classification result of A = 0.94 and showed improved classification results between mimyeon flour (MF)1 and MF2 of 0.72 and 0.87, respectively. In this study, the potential of non-destructive detection and classification of grain flours using fHSI technology and machine learning methods was demonstrated.

Calibration transfer between miniature NIR spectrometers used in the assessment of intact peach and melon soluble solids content

  • Greensill, Colin.V.;Walsh, Kerry.B.
    • 한국근적외분광분석학회:학술대회논문집
    • /
    • 한국근적외분광분석학회 2001년도 NIR-2001
    • /
    • pp.1127-1127
    • /
    • 2001
  • The transfer of predictive models using various chemometric techniques has been reported for FTNIR and scanning-grating based NIR instruments with respect relatively dry samples (<10% water). Some of the currently used transfer techniques include slope and bias correction (SBC), direct standardization (DS), piecewise direct standardization (PDS), orthogonal signal correction (OSC), finite impulse transform (FIR) and wavelet transform (WT) and application of neural networks. In a previous study (Greensill et at., 2001) on calibration transfer for wet samples (intact melons) across silicon diode array instrumentation, we reported on the performance of various techniques (SBC, DS, PDS, double window PDS (DWPDS), OSC, FIR, WT, a simple photometric response correction and wavelength interpolative method and a model updating method) in terms of RMSEP and Fearns criterion for comparison of RMSEP. In the current study, we compare these melon transfer results to a similar study employing pairs of spectrometers for non-invasive prediction of soluble solid content of peaches.

  • PDF

Spectroscopic Techniques for Nondestructive Quality Inspection of Pharmaceutical Products: A Review

  • Kandpal, Lalit Mohan;Park, Eunsoo;Tewari, Jagdish;Cho, Byoung-Kwan
    • Journal of Biosystems Engineering
    • /
    • 제40권4호
    • /
    • pp.394-408
    • /
    • 2015
  • Spectroscopy is an emerging technology for the quality assessment of pharmaceutical samples, from tablet manufacturing to final quality assurance. The traditional methods for the quality management of pharmaceutical tablets are time consuming and destructive, while spectroscopic techniques allow rapid analysis in a non-destructive manner. The advantage of spectroscopy is that it collects both spatial and spectral information (called hyperspectral imaging), which is useful for the chemical imaging of pharmaceutical samples. These chemical images provide both qualitative and quantitative information on tablet samples. In the pharmaceutics, spectroscopic techniques are used for a variety of applications, such as analysis of the homogeneity of powder samples as well as determination of particle size, product composition, and the concentration, uniformity, and distribution of the active pharmaceutical ingredient in solid tablets. This review paper presents an introduction to the applications of various spectroscopic techniques such as hyperspectroscopy and vibrational spectroscopies (Raman spectroscopy, FT-NIR, and IR spectroscopy) for the quality and safety assessment of pharmaceutical solid dosage forms. In addition, various chemometric techniques that are highly essential for analyzing the spectroscopic data of pharmaceutical samples are also reviewed.

HPLC 분석법을 이용한 이중탕(理中湯) 제제의 품질평가 (Quality Assessment of Ijung-tang Preparations Using a HPLC Analysis)

  • 하우람;박진형;윤동인;이장천;김정훈
    • 대한본초학회지
    • /
    • 제31권3호
    • /
    • pp.29-35
    • /
    • 2016
  • Objectives : Ijung-tang (IJT) is a traditional herbal formula and has been used to treat digestive diseases such as abdominal pain, vomiting, and diarrhea. IJT consists of four herbal medicines, Ginseng radix, Atractylodis rhizoma alba, Zingiberis rhizoma, and Glycyrrhizae radix et rhizoma, containing various bioactive compounds. Quality assesment of IJT preparations was performed by analytical method for determining marker compounds.Methods : Determination of seven marker compounds in IJT preparations was quantitatively conducted by high-performance liquid chromatography equipped with a diode-array detector. The marker compounds were separated on a reversed-phase C18 column and the analytical method was successfully validated. Chemometric analysis was performed to compare IJT water extracts and commercial IJT granules.Results : Limit of detection and limit of quantification values were in the ranges of 0.093-2.649 μg/mL and 0.283-8.027 μg/mL, respectively. Precisions were 0.30-3.87% within a day and 0.23-2.35% over three consecutive days. Recoveries of the marker compounds ranged from 87.35-107.05%, with relative standard deviation (RSD) values < 6.15%. Repeatabilities were < 1.20% and < 1.71% of RSD value for retention time and absolute peak area, respectively. The results from quantitative analysis showed that the quantities of seven marker compounds of IJT samples varied, as were found in principal component analysis and hierarchical clustering analysis.Conclusions : The analytical method developed in the present study was precise and reliable to simultaneously determine marker compounds of IJT. Therefore, it can be used for the quality assessment of IJT preparations.

Health Risks to Children and Adults Residing in Riverine Environments where Surficial Sediments Contain Metals Generated by Active Gold Mining in Ghana

  • Armah, Frederick Ato;Gyeabour, Elvis Kyere
    • Toxicological Research
    • /
    • 제29권1호
    • /
    • pp.69-79
    • /
    • 2013
  • The purpose of this study was to investigate the current status of metal pollution in the sediment from rivers, lakes, and streams in active gold mining districts in Ghana. Two hundred and fifty surface sediment samples from 99 locations were collected and analyzed for concentrations of As, Hg, Cr, Co, Cu, Fe, Zn, Pb, Cd, Ni, and Mn using inductively coupled plasma-mass spectroscopy (ICP-MS). Metal concentrations were then used to assess the human health risks to resident children and adults in central tendency exposure (CTE) and reasonable maximum exposure (RME) scenarios. The concentrations of Pb, Cd, and As were almost twice the threshold values established by the Hong Kong Interim Sediment Quality Guidelines (ISQG). Hg, Cu, and Cr concentrations in sediment were 14, 20, and 26 times higher than the Canadian Freshwater Sediment Guidelines for these elements. Also, the concentrations of Pb, Cu, Cr, and Hg were 3, 11, 12, and 16 times more than the Australian and New Zealand Environment and Conservation Council (ANZECC) sediment guideline values. The results of the human health risk assessment indicate that for ingestion of sediment under the central tendency exposure (CTE) scenario, the cancer risks for child and adult residents from exposure to As were $4.18{\times}10^{-6}$ and $1.84{\times}10^{-7}$, respectively. This suggests that up to 4 children out of one million equally exposed children would contract cancer if exposed continuously to As over 70 years (the assumed lifetime). The hazard index for child residents following exposure to Cr(VI) in the RME scenario was 4.2. This is greater than the United States Environmental Protection Agency (USEPA) threshold of 1, indicating that adverse health effects to children from exposure to Cr(VI) are possible. This study demonstrates the urgent need to control industrial emissions and the severe heavy metal pollution in gold mining environments.