• Title/Summary/Keyword: Chemistry class

Search Result 358, Processing Time 0.023 seconds

Physicochemical Characteristics of Fe3O4 Magnetic Nanocomposites Based on Poly(N-isopropylacrylamide) for Anti-cancer Drug Delivery

  • Davaran, Soodabeh;Alimirzalu, Samira;Nejati-Koshki, Kazem;Nasrabadi, Hamid Tayefi;Akbarzadeh, Abolfazl;Khandaghi, Amir Ahmad;Abbasian, Mojtaba;Alimohammadi, Somayeh
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.1
    • /
    • pp.49-54
    • /
    • 2014
  • Background: Hydrogels are a class of polymers that can absorb water or biological fluids and swell to several times their dry volume, dependent on changes in the external environment. In recent years, hydrogels and hydrogel nanocomposites have found a variety of biomedical applications, including drug delivery and cancer treatment. The incorporation of nanoparticulates into a hydrogel matrix can result in unique material characteristics such as enhanced mechanical properties, swelling response, and capability of remote controlled actuation. Materials and Methods: In this work, synthesis of hydrogel nanocomposites containing magnetic nanoparticles are studied. At first, magnetic nanoparticles ($Fe_3O_4$) with an average size 10 nm were prepared. At second approach, thermo and pH-sensitive poly (N-isopropylacrylamide -co-methacrylic acid-co-vinyl pyrrolidone) (NIPAAm-MAA-VP) were prepared. Swelling behavior of co-polymer was studied in buffer solutions with different pH values (pH=5.8, pH=7.4) at $37^{\circ}C$. Magnetic iron oxide nanoparticles ($Fe_3O_4$) and doxorubicin were incorporated into copolymer and drug loading was studied. The release of drug, carried out at different pH and temperatures. Finally, chemical composition, magnetic properties and morphology of doxorubicin-loaded magnetic hydrogel nanocomposites were analyzed by FT- IR, vibrating sample magnetometry (VSM), scanning electron microscopy (SEM). Results: The results indicated that drug loading efficiency was increased by increasing the drug ratio to polymer. Doxorubicin was released more at $40^{\circ}C$ and in acidic pH compared to that $37^{\circ}C$ and basic pH. Conclusions: This study suggested that the poly (NIPAAm-MAA-VP) magnetic hydrogel nanocomposite could be an effective carrier for targeting drug delivery systems of anti-cancer drugs due to its temperature sensitive properties.

A New Class of Platinum (II) Complexes [Pt (trans-1-daeh) (DPPP)] $2NO_3$ and [Pt (trans-1-daeh)(DPPE)] $2NO_3$ Exhibiting Antitumor Activity and Nephrotoxieity (새로운 Platinum (II) Complex ([Pt (II)(trans-1-dach)(DPPP)] $(NO_3)_2$와 [Pt (II)(trans-1-dach)(DPPE)] $(NO_3)_2$의 항암효과 및 신독성에 관한연구)

  • Jung, Jee-Chang;Yoon, Chin-Hee;Chang, Sung-Goo;Lee, Kyung-Tae;Rho, Young-Soo
    • The Korean Journal of Pharmacology
    • /
    • v.29 no.2
    • /
    • pp.283-295
    • /
    • 1993
  • Pt-complexes is currently one of the most compounds used in the treatment of solid tumors. However, its used is limited by severe side effects such as renal toxicity. Our platinum-based drug discovery program is aimed at developing drugs capable of diminishing toxicity and improving antitumor activity. We synthesized new Pt (II) complex analogues containing 1, 2-diaminocyclohexane (dach) as carrier ligand and 1, 3-bis (diphenylphosphino) propane (DPPP)/1,2-bis (diphenylphosphino) ethane (DPPE) as a leaving group. Furthermore, nitrate was added to improve the solubility. A new series of (KHPC-001) [Pt (trans-1-dach)(DPPP)] $2NO_3$ and (KHPC-002) [Pt (trans-1-dach)(DPPE)] $2NO_3$ were synthesized and characterized by their elemental analysis and by various spectroscopic techniques [infrared (IR), $^{13}carbon$ nuclear magnetic resonance (NMR)]. KHPC-001 and KHPC-002 demonstrated acceptable antitumor activity aganist P-388, L-1210 lymphocytic leukemia cells and significant activity as compared with that of cisplatin. The toxicity of KHPC-001 and KHPC-002 was found quite less than that of cisplatin using MTT, $[^3H]$ thymidine uptake and glucose consumption tests in rabbit proximal tubule cells and human kidney cortical cells.

  • PDF

The Effect of STS Instruction through Science to Enhance Hypothetical Deductive Thinking Skills for Creativity - Water Section of Chemistry I (창의성의 기저가 되는 가설 연역적 사고력 신장을 고려한 과학 교수인 STS 수업 전략의 효과 - 과학 I의 물 단원)

  • Kang, Soon-Hee;Kim, Eun-Sook
    • Journal of The Korean Association For Science Education
    • /
    • v.25 no.3
    • /
    • pp.327-335
    • /
    • 2005
  • This study investigates student achievement and science-related attitudes on STS hypothetical deductive instruction strategy in the water section of high school chemistry. Two 11th grade co-ed high school classes participated in the study; one control group and one treatment group. After being taught for 10 class periods during the second semester. ANCOVA analysis revealled no significant difference (p>.05) between two groups' achievement tests. However, analysis by ANCOVA did show that the scores for science-related attitudes in the treatment group were significantly higher than those of the control group (p<.05). In particular, the scores of science learning contents and science value about science-related attitude were significantly higher in the treatment group.

Survey of Actual Conditions of Material Safety Data Sheet and Quantitative Risk Assessment of Toxic Substances : Substitutes for Degreasing Agents (일부 대체세정제 제조업체의 물질안전보건자료의 실태와 그 화학물질의 유해성 평가에 관한 연구)

  • Yoon, Chong-Guk;Jeon, Tae-Won;Chung, Chin-Kap;Lee, Myung-Hee;Lee, Sang-Il;Cha, Sang-Eun;Yu, Il-Je
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.10 no.2
    • /
    • pp.18-26
    • /
    • 2000
  • Since the regulation of MSDS (Material Safety Data Sheets) had started from July 1996, employers were required to furnish MSDS for the chemicals in use in their workplace. However, many MSDS did not contain upright information for the chemicals, and they were not updated regularly, and were not written in the standard format required by the Industrial Safety and Health Act (ISHA). The purposes of this study were 1) to examine the reliability of MSDS for mixed solvents, 2) to provide reliable MSDS to employers or employees, 3) to find out any difficulties in implementing MSDS after the initiation, and 4) to promote regular MSDS updating and to ensure the reliability of MSDS for chemical manufacturers. To check the reliability of MSDS of mixed chemicals, 21 samples of mostly degreasing solvents were collected along with their MSDS from the work place. The samples were analyzed by gas chromatography-mass selective detector(GC-MSD). Their components were classified as saturated hydrocarbon, cyclic hydrocarbon, aromatics, and halogen containing hydrocarbon, and the amount of each class were measured. Manufacture's MSDS were compared with the actual composition of the collected samples, and further examined the reliability by checking whether the chemicals analyzed were included in the MSDS correctly. Finally, each item of MSDS was evaluated whether the MSDS correspond to the regulation required by ISHA. The results were following: 1) most of the degreasing solvents in MSDS were incorrect in their composition and contents, 2) the information in the MSDS including hazard classification, exposure level, toxicity, regulatory information were incorrectly provided, and 3) some MSDS did not disclose carcinogens in their MSDS. Continuous monitoring of MSDS was required to ensure reliability of MSDS. The Chemicals containing hydrocarbons from C10-C15 need to be tested to provide toxicity data. In addition, governmental support for providing correct MSDS was recommended to ensure reliability of MSDS. The MSDS regulation relating to the confidential business information may need to be revised to ensure reliability of MSDS.

  • PDF

The Effects of Problem-based Learning Applied to the Inorganic Chemistry Laboratory Classes (문제 중심 학습(PBL)을 적용한 「무기화학실험」수업의 효과)

  • Kim, Young-Eun;Shin, Ye-Jin;Yoon, Heo-Jeong;Woo, Ae-Ja
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.6
    • /
    • pp.771-780
    • /
    • 2010
  • The purpose of this study is to examine the effects of PBL (Problem-based Learning) strategy applied to the "Inorganic Chemistry Laboratory" class. Especially, the changes in 'self-directed learning ability' and 'attitudes toward science' of undergraduate students were examined. In addition, perception on PBL problem and the PBL classes were investigated. The results of this study were as follows: First, after the course, 'self-directed learning ability' and 'attitude toward science' of students were significantly improved (p < .05). There were significant improvements in every sub-categories except 'self-confidence as a learner' for 'self directed learning ability' and every sub-categories except 'usefulness of science' for 'attitude toward science'. Second, the students expressed that PBL strategy provided opportunities to learn self-directively and responsibly, but the process of defining the problem was difficult. Finally on the survey toward PBL strategy, the students responded that PBL problems were authentic and helpful to learn problem solving ability. In conclusion, PBL laboratory course is effective for developing self-directed learning ability and positive attitude toward science.

The Influences of Reciprocal Peer Tutoring Strategy and Field Independence-Dependence in Instruction Enhancing Student Questions by Using Weekly Reports (주단위 보고서를 활용한 질문 촉진 수업에서 상호동료교수 전략 및 장독립성-장의존성의 영향)

  • Kang, Hun-Sik;Kwon, Eun-Kyung;Noh, Tae-Hee
    • Journal of the Korean Chemical Society
    • /
    • v.51 no.1
    • /
    • pp.82-92
    • /
    • 2007
  • This study investigated the influences of reciprocal peer tutoring strategy and field independencedependence in the instruction enhancing student questions by using weekly reports. Seventh graders (N=152) from a middle school were assigned to WR (weekly reports) and WR-RPT (weekly reports-reciprocal peer tutoring) groups. Students were taught about ‘three states of matter', ‘motion of molecules', and ‘change of states and thermal energy for eighteen class hours and wrote weekly reports six times for the period. The students in the WR-RPT group also conducted reciprocal peer tutoring with the questions of weekly reports which they wrote. The results revealed that the scores of the WR-RPT group were significantly higher than those of the WR group in a conception test regardless of students' field independence-dependence. The field dependent students in the WR-RPT group performed better in an achievement test than those in WR group, while there was no significant difference for the field independent stu dents between the two groups. Additionally, field independent students in each group scored significantly higher than field dependent students in the two tests. Many students, especially having more field independence in the WR-RPT group, perceived WR-RPT positively.

A Study on the Understanding about Nature of Scientific Knowledge and Attitude toward Scientific Inquiry of Pre-service Science Teacher through Open Inquiry (개방형 탐구를 경험한 예비과학교사의 과학 지식의 본성에 대한 이해와 과학 탐구에 대한 태도 변화)

  • Cho, JeHee;Woo, Ae Ja
    • Journal of the Korean Chemical Society
    • /
    • v.61 no.5
    • /
    • pp.263-276
    • /
    • 2017
  • The purpose of this study is to investigate the understanding of nature of scientific knowledge and attitudes toward scientific inquiry of pre-service science teachers experienced open inquiry. The study was conducted in 10 sessions of open inquiry-based chemistry experiment. The subjects were 40 pre-service science teachers recruited from the experiment class. They received pre-test, mid-test, post-test on understanding nature of scientific knowledge and attitudes toward scientific inquiry of open inquiry activities. 20 pre-service science teachers among them participated in the interview. The results of this study are as follows. First, there was a significant difference in pre-service science teachers' understanding of the nature of the scientific knowledge (p<.05). In particular, understanding of creativity and sociality parts improved gradually. Second, pre-service science teachers' attitude toward scientific inquiry had changed negatively until the middle of the semester, and then changed positively later. The post-test score was significantly higher than the mid-test score (p<.05).

Isolation of Functional Fatty Acid in Cosolvent Induced SFE Process (공용매가 첨가된 초임계유체 추출공정에서 기능성 지방산의 추출)

  • Lee, Seung Bum;Park, Kyung Ai;Hong, In Kwon
    • Applied Chemistry for Engineering
    • /
    • v.10 no.3
    • /
    • pp.438-444
    • /
    • 1999
  • The natural full-fat rice bran is reported to contain 8.4 to 14.7 wt % Lipids, but the amount and composition of bran depend on the type of rice, quality of paddy, pretreatments to paddy such as parboiling, type of milling system employed, and the degree of polishing. These lipids are usually mixtures of several class fatty acids containing palmitic acid, linolenic acid, linoleic acid, oleic acid, stearic acid, tocopherol, squalene, etc. In this study the oil rich essential fatty acid (EFA) including squalene was extracted from the domestic brown rice bran using supercritical fluid extraction (SFE) and cosolvent induced SFE process, respectively. And the extracts were analyzed with GC-MSD. The extracted amount of rice bran oil was dependent upon the operating pressure and temperature, and the fatty acid composition of oil was varied with the reduced density (${\rho}_{\gamma}$) of supercritical carbon dioxide. About 70~80% of rice bran oil was extracted in 4hrs. The cosolvent induced SFE process shortened the total extraction time, extracted greater amount of oil than SFE process. Especially squalene which was not found in solvent extract phase was identified in SFE and cosolvent induced SFE process.

  • PDF

Preparation of Fragrant Microcapsule for Reducing Stress (긴장완화를 위한 향기나는 마이크로캡슐의 제조)

  • Kim, Yoon A;Kim, So Hyun;Park, Ji Su;Lee, Da Som;Kim, Jin Gon;Shin, Jae Sup
    • Journal of Adhesion and Interface
    • /
    • v.13 no.1
    • /
    • pp.17-23
    • /
    • 2012
  • A fragrant microcapsule was prepared for use by students to reduce the stress of taking examinations. Rosmarinic acid was used as a fragrant oil which had the effect of relaxing stress, polycaprolactone (PCL) was used as a capsule wall material, and poly(vinyl alcohol) (PVA) as a stabilizer. The solvent evaporation method was used to form the microcapsule. The microcapsules were prepared by changing the stirring rate, the concentration of the stabilizer, and the molecular weight of PCL. The shape of the microcapsule was characterized by scanning electron microscopy (SEM). The size of the microcapsule was reduced by increasing the stirring speed. The release rate of rosmarinic acid was decreased when the higher molecular weight PCL was used. When the prepared microcapsule was tested in an aromatherapy class, the microencapsulated fragrant oil had a longer release time than the original fragrant oil. The study data showed that this fragrant oil was effective for increasing concentration ability, reducing stress, increasing digestive power, and increasing memory for the students.

High Energy Density Germanium Anodes for Next Generation Lithium Ion Batteries (다음세대 리튬이온 배터리용 고에너지 밀도 게르마늄 음극)

  • Ocon, Joey D.;Lee, Jae Kwang;Lee, Jaeyoung
    • Applied Chemistry for Engineering
    • /
    • v.25 no.1
    • /
    • pp.1-13
    • /
    • 2014
  • Lithium ion batteries (LIBs) are the state-of-the-art technology among electrochemical energy storage and conversion cells, and are still considered the most attractive class of battery in the future due to their high specific energy density, high efficiency, and long cycle life. Rapid development of power-hungry commercial electronics and large-scale energy storage applications (e.g. off-peak electrical energy storage), however, requires novel anode materials that have higher energy densities to replace conventional graphite electrodes. Germanium (Ge) and silicon (Si) are thought to be ideal prospect candidates for next generation LIB anodes due to their extremely high theoretical energy capacities. For instance, Ge offers relatively lower volume change during cycling, better Li insertion/extraction kinetics, and higher electronic conductivity than Si. In this focused review, we briefly describe the basic concepts of LIBs and then look at the characteristics of ideal anode materials that can provide greatly improved electrochemical performance, including high capacity, better cycling behavior, and rate capability. We then discuss how, in the future, Ge anode materials (Ge and Ge oxides, Ge-carbon composites, and other Ge-based composites) could increase the capacity of today's Li batteries. In recent years, considerable efforts have been made to fulfill the requirements of excellent anode materials, especially using these materials at the nanoscale. This article shall serve as a handy reference, as well as starting point, for future research related to high capacity LIB anodes, especially based on semiconductor Ge and Si.