• Title/Summary/Keyword: Chemistry Textbook

Search Result 133, Processing Time 0.024 seconds

The Process of the Quickening and Development of Science-Technology- Society Education in the United Kingdom (II) - During the 2nd Half of the 20th Century - (영국에서의 과학-기술-사회 교육의 태동과 발전 과정 (II) - 20세기 후반을 중심으로 -)

  • Song, Jin-Woong
    • Journal of The Korean Association For Science Education
    • /
    • v.20 no.1
    • /
    • pp.52-76
    • /
    • 2000
  • Following the previous study focused on the period until the middle of the 20th century, this study tried to show how STS-related ideas have been developed historically in British science education, particularly focused on the period of the 2nd half of the 20th century. Like the USA, the UK witnessed the development of numerous academically-oriented programs, such as Nuffield projects, during the 1950-60s. However, during the 1970s, there had been growing criticism against the discipline-centered science education and some new noticeable approaches had been made to compensate the contemporary trend. For example, although its main focus was on the integrated approach in school science, the SCISP was quite successful to illustrate the importance of the relationship between science and society. Following this example, Science in Society and SISCON-in-Schools were more ambitious in developing genuine STS programs. These two projects were developed simultaneously and took the form of modules, rather than of textbooks. Nevertheless, Science in Society was more concerned with the applied and industrial aspects of science while SISCON-in-Schools was more inclined to the historical, philosophical and social aspects of science. During the 1980s, far more ambitious attempts had been made to develop full-scale STS programs, i.e. Salters' Chemistry/Science and SATIS. These two programs have been developed with the active corporation from the ASE and soon became the typical examples of the STS approach across the world. Besides the similarities between them, Salters' approach is more application-oriented, subject-oriented, and textbook-like while SATIS is more socially-oriented, issue-oriented and module-style. In summary, the history of STS approach in school science shows that the STS programs were developed under the different social backgrounds and initiated by different groups of the people who have different views towards the purposes of school science and that the STS approach is certainly not the exclusive characteristic of the last period of the 20th century. Finally, the features of the major STS programs developed in Britain during the 20th century are summarized and compared in relation to the Ziman's criteria of the possible approaches in STS education. And some general conclusion are drown based on the study of the history of the STS approaches in Britain.

  • PDF

Three Teaching-Learning Plans for Integrated Science Teaching of 'Energy' Applying Knowledge-, Social Problem-, and Individual Interest-Centered Approaches (지식내용, 사회문제, 개인흥미 중심의 통합과학교육 접근법을 적용한 '에너지' 주제의 교수.학습 방안 개발(II))

  • Lee, Mi-Hye;Son, Yeon-A;Young, Donald B.;Choi, Don-Hyung
    • Journal of The Korean Association For Science Education
    • /
    • v.21 no.2
    • /
    • pp.357-384
    • /
    • 2001
  • In this paper, we described practical teaching-learning plans based on three different theoretical approaches to Integrated Science Education (ISE): a knowledge centered ISE, a social problem centered ISE, and an individual interest centered ISE. We believe that science teachers can understand integrated science education through this paper and they are able to apply simultaneously our integrated science teaching materials to their real instruction in classroom. For this we developed integrated science teaching-learning plans for the topic of energy which has a integrated feature strongly among integrated science subject contents. These modules were based upon the teaching strategies of 'Energy' following each integrated directions organized in the previous paper (Three Strategies for Integrated Science Teaching of "Energy" Applying Knowledge, Social Problem, and Individual Interest Centered Approaches) and we applied instruction models fitting each features of integrated directions to the teaching strategies of 'Energy'. There is a concrete describing on the above three integrated science teaching-learning plans as follows. 1. For the knowledge centered integration, we selected the topic, 'Journey of Energy' and we tried to integrate the knowledge of physics, chemistry, biology, and earth science applying the instruction model of 'Free Discovery Learning' which is emphasized on concepts and inquiry. 2. For the social problem centered integration, we selected the topic, 'Future of Energy' to resolve the science-related social problems and we applied the instruction model of 'Project Learning' which is emphasized on learner's cognitive process to the topic. 3. For the individual interest centered integration, we selected the topic, 'Transformation of Energy' for the integration of science and individual interest and we applied the instruction model of 'Project Learning' centering learner's interest and concern. Based upon the above direction, we developed the integrated science teaching-learning plans as following steps. First, we organized 'Integrated Teaching-Learning Contents' according to the topics. Second, based upon the above organization, we designed 'Instructional procedures' to integrate within the topics. Third, in accordance with the above 'Instructional Procedures', we created 'Instructional Coaching Plan' that can be applied in the practical world of real classrooms. These plans can be used as models for the further development of integrated science instruction for teacher preparation, textbook development, and classroom learning.

  • PDF

The Effect of Brain-Based Evolutionary STEAM Education on Scientific Interest and Scientific Creativity in Elementary School Students (뇌기반 진화적 STEAM 교육이 초등학생의 과학 흥미와 과학 창의성에 미치는 영향)

  • Jeong, Kyung-Wook;Lim, Chae-Seong
    • Journal of Korean Elementary Science Education
    • /
    • v.40 no.2
    • /
    • pp.239-252
    • /
    • 2021
  • The purpose of this study is to develop an evolutionary STEAM education program based on the brain and to analyze its effects on scientific interest and scientific creativity of elementary school students. Four different topics based on four scientific fields (Physics, Chemistry, Biology and Earth Science) were derived from the science textbook under the 2015 revised curriculum to build a brain-based evolutionary STEAM education program. The research subjects were 90 fourth graders of S-elementary school located in Gyeonggi Province, Korea and they were divided into an experimental group of 45 students and a comparative group of 45 students. The main findings of this study are as follows. First, according to the independent samples t-test of scientific interest, no statistically significant difference were found between the two groups, but the brain-based evolutionary STEAM education had meaningful effect on improving 'interest in scientific learning' and 'anxiety about scientific learning'. Second, according to the paired samples t-test of scientific interest, the experimental group had significantly improved 'interest in science' but on the other hand, there was no effect on the comparative group. Third, scientific creativity and originality of the experimental group were significantly higher after the class than that of the comparative group. Fourth, although there were some significant differences between the two groups in scientific creativity after the class, both groups had improved scientific creativity between the results of pre and post test. Based on these results, we discuss implications for science education and STEAM education research.