• Title/Summary/Keyword: Chemisorbed

Search Result 62, Processing Time 0.024 seconds

Surface Potential Change Depending on Molecular Orientation of Hexadecanethiol Self-Assembled Monolayers on Au(111)

  • Ito, Eisuke;Arai, Takayuki;Hara, Masahiko;Noh, Jaegeun
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.6
    • /
    • pp.1309-1312
    • /
    • 2009
  • Surface potential and growth processes of hexadecanethiol (HDT) self-assembled monolayers (SAMs) on Au(111) surfaces were examined by Kelvin probe method and scanning tunneling microscopy. It was found that surface potential strongly depends on surface structure of HDT SAMs. The surface potential shift for the striped phase of HDT SAMs chemisorbed on Au(111) surface was +0.45 eV, which was nearly the same as that of the flat-lying hexadecane layer physisorbed on Au(111) surface. This result indicates that the interfacial dipole layer induced by adsorption of alkyl chains is a main contributor to the surface potential change. In the densely-packed HDT monolayer, further change of the surface potential was observed, suggesting that the dipole moment of the alkanethiol molecules is an origin of the surface potential change. These results indicate that the work function of a metal electrode can be modified by controlling the molecular orientation of an adsorbed molecule.

Formation of Hydroxyl Radical from the Hydrogen Chemisorbed Silicon Surface by Incident Oxygen Atoms

  • Ree, Jong-Baik;Chang, Kyung-Soon;Kim, Yoo-Hang;Shin, Hyung-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.7
    • /
    • pp.986-992
    • /
    • 2003
  • We have calculated the probability of the OH formation and energy deposit of the reaction exothermicity in the newly formed OH, particularly in its vibrational motion, in the gas-surface reaction O(g) + H(ad)/Si → OH(g) + Si on the basis of the collision-induced Eley-Rideal mechanism. The reaction probability of the OH formation increases linearly with initial excitation of the HSi vibration. The translational and vibrational motions share most of the energy when the H-Si vibration is initially in the ground state. But, when the initial excitation increases, the vibrational energy of OH rises accordingly, while the energies shared by other motions vary only slightly. The product vibrational excitation is significant and the population distribution is inverted. Flow of energy between the reaction zone and the solid has been incorporated in trajectory calculations. The amount of energy propagated into the solid is only a few percent of the available energy released in the OH formation.

Surface-enhanced Raman Spectroscopy of Quinomethionate Adsorbed on Silver Colloids

  • Kim, Mak-Soon;Kang, Jae-Soo;Park, Si-Bum;Lee, Mu-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.5
    • /
    • pp.633-637
    • /
    • 2003
  • We have studied the surface-enhanced Raman spectroscopy (SERS) spectrum of quinomethionate (6-methyl-1,3-dithiolo[4,5-b]quinoxalin-2-one), which is an insecticide or fungicide used on vegetables and wheat. We observed no signals in the ordinary Raman spectra of solid-state quinomethionate, but when it was adsorbed on a colloidal silver surface, strong vibrational signals were obtained at a very low concentration. The SERS spectra were obtained by silver colloids prepared by the Creighton et al. method. The influence of pH and the aggregation inductors ($Cl^-,\;Br^-,\;I^-,\;F^-$) on the adsorption mechanism was investigated. Two different adsorption mechanisms were deduced, depending on the experimental conditions: The one N atom or two N atoms are chemisorbed on an Ag surface. An important contribution of the chemical mechanism was inferred when the one N atom was perpendicularly adsorbed on a surface. It is possible that quinomethionate can be detected to about $10^{-5}$ M.

Surface Segregation of Sulfur in Ti and ti-Aluminide Alloys (티타늄과 티타늄 알루니마이드 합금에서 황의 표면석출)

  • 이원식;이재희
    • Journal of the Korean Vacuum Society
    • /
    • v.5 no.1
    • /
    • pp.39-47
    • /
    • 1996
  • The segregation of S in electrotransport-purified polycrystaline $\alpha$-Ti and Ti-aluminide alloys has been studied by Auger electron spectroscopy(AES), Ion scattering spectroscopy(ISS) and Secondary ion mass spectrometry(SIMS) in the temperature range extending from 20 to $1000^{\circ}C$. The chemisorbed oxygen and carbon on Ti were observed to disappear at T>$400^{\circ}C$ after which the S signal increased to levels approaching 0.5 monolayer. At lower temperatures the presence of the surface oxygen and carbon appeared to inhibit the segregation, presumably because there were no available surfaces sites for the S emerging from the bulk. The activation energy for the S segregation in pure polycrystaline Ti was determined to be 16.7 kcal/mol, which, when compared to S segretation from single-crystal Ti, is quite small and suggests grain boundary or defect diffusion segregation kinetics. In the Ti-aluminide alloys, the presence of Al appeared to enhance the retention of surface oxygen which, in turn, substantially reduced the S segretation. The $\gamma$ alloy, with its high Al content, exhibited the greatest retention of surface oxygen and the smallest quantity of the S segregation(T$\simeq1000^{\circ}C$).

  • PDF

Effect of Potassium Promoter on the Adsorption of Carbon Monoxide on Silica Supported Ruthenium

  • Lee, Jo-Woong;Chang, Sei-Hun;Pak, Hyung-Suk;Shin, Kook-Joe;Kim, Myung-Kun;Chung, Won-Il
    • Bulletin of the Korean Chemical Society
    • /
    • v.9 no.3
    • /
    • pp.137-143
    • /
    • 1988
  • We have investigated the infrared spectra for carbon monoxide chemisorbed on silica supported ruthenium with and without potassium coating within the frequency range of 1800-2200 $cm^{-1}$ at various ruthenium concentrations and CO pressures. For the system without potassium coating, three bands were observed in the infrared spectra when CO was adsorbed on both the reduced and oxidized form of supported ruthenium. However, the relative intensities of these three bands were found to have no interdependence. Therefore, we have assigned each of these bands as arising from the CO stretching vibration for carbon monoxide molecules adsorbed on the Ru sites of different nature. On coating with potassium, the 2030 $cm^{-1}$ band observed for the system without potassium coating was found to suffer red shift by 10-30 $cm^{-1}$ and we conclude that this bathochromic shift is caused by enhancement in the capability of back donation of electrons from the metal atom to the antibonding ${\pi}{\ast}$ orbitals of CO due to the presence of potassium.

Adsorption and Dissociation Reaction of Carbon Dioxide on Pt(111) and Fe(111) Surface: MO-study

  • Jo, Sang Jun;Park, Dong Ho;Heo, Do Seong
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.8
    • /
    • pp.779-784
    • /
    • 2000
  • Comparing the adsorption properties and dissociation on a Pt(111) iththat ona Fe(111) surface, we have con-sidered seven coordination modes of the adsorbed binding site: $di-${\sigma}$${\Delta}$\mu\pi/\mu$, 1-fbld,2-fold, and 3-fbld sites. On the Pt(111) surface, t he adsorbed binding site of carbon dioxide was strongestat the1-fold site and weakest at the $\pi/\mu-site.$ The adsorbed binding site on the Fe(111) surface was strongest at the di-бsite and weakest at the 3-fold site. We have found that the binding energy at each site that excepted 3-fold on the Fe(111) surface was stronger than the binding energy on the Pt(111) surface and that chemisorbed $CO_2bends$ because of metal mixing with $2\piu${\rightarrow}$6a_1CO_2orbital.$, The dissociation reaction occured in two steps, with an intermediate com-plex composed of atomic oxygen and ${\pi}bonding$ CO forming. The OCO angles of reaction intermediate com-plex structure for the dissociation reaction $were115^{\circ}Con$ the Pt(111), and $117^{\circ}C$ on the Fe(111) surface. We have found that the $CO_2dissociation$ rea11) surface proceeds easily,with an activationenergy about 0.2 eV lower than that on the Pt(111) surface.

Kinetics and Mechanism of the Oxidation of Carbon Monoxide on CoO-$\alpha-Fe_2O_3$ Catalysts

  • Kim, Keu Hong;Choi, Jae Shi;Kim, Young Bae
    • Bulletin of the Korean Chemical Society
    • /
    • v.8 no.5
    • /
    • pp.389-393
    • /
    • 1987
  • The oxidation of carbon monoxide by gaseous oxygen on 0.53, 1.02, and 1.51 mol $\%$CoO-doped $-Fe_2O_3$ catalysts has been investigated in the temperature range from 340 to 480$^{\circ}C$ under various CO and $O_2$ partial pressures. The oxidation rates have been correlated with 1.5-order kinetics; the 0.5-order with respect to $O_2$ and the first-order with respect to CO. In the above temperature range, the activation energy is 0.34 $\pm$ 0.01 eV${\cdot}$$mol^{-1}$. The electrical conductivity of 0.53, 1.02, and 1.51 mol %CoO-doped $\alpha$-$Fe_2O_3$ has been measured at 350$^{\circ}C$ under various $P_{CO}and $P_{O_2}$. From the conductivity data it was found that $O_2$ was adsorbed on Vo formed by doping with CoO, while CO appeared essentially to be chemisorbed on the lattice oxygen of the catalyst surface. The proposed oxidation mechanism and the dominant defect were supported by the agreement between the kinetic data and conductivities.

Electrical Properties of Pure and Cadmium-Doped Indium Sesquioxide

  • Lee, Sung-Han;Lee, Jong-Hwan;Kim, Keu-Hong;Jun, Jong-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.10 no.5
    • /
    • pp.418-422
    • /
    • 1989
  • Cadmium-doped indium sesquioxide systems with a variety of CdO mol % were prepared to investigate the effect of doping on the electrical properties of indium sesquioxide. The electrical conductivities of pure $In_2O_3$ and Cd-doped $In_2O_3$ systems were measured in the temperature range from 25 to $1200^{\circ}C$ and $P_O_2$ range from $10^{-7}$ to $10^{-1}$ atm, and the thermoelectric power was measured in the same temperature range. The electrical conductivity and thermopower decreased with increasing CdO mol % indicating that all the samples are n-type semiconductors. The electrical conductivities of pure $In_2O_3$ and lightly doped $In_2O_3$ were considerably affected by the chemisorption $O_2$ at temperatures of 400 to $560^{\circ}C$ and then gaseous oxygen was reversibly chemisorbed at the temperature. The predominant defects in $In_2O_3$ are believed to be triply-charged interstitial indiums at temperatures above $560^{\circ}C$ and oxygen vacancies below $560^{\circ}C$. In Cd-doped $In_2O_3$ systems, cadmium acts as an electron acceptor and inhibits the transfer of lattice indium to interstitial sites, which give rise to the decrease of the electrical conductivity.

A Study on the Chemisorption of Carbon Monoxide on Silica-Supported Rhodium

  • Jo Woong Lee;Seihun Chang;Won-Il Chung
    • Bulletin of the Korean Chemical Society
    • /
    • v.10 no.6
    • /
    • pp.535-543
    • /
    • 1989
  • We have investigated the infrared absorption spectra for carbon monoxide chemisorbed on reduced and oxidized Rh/$SiO_2$ with and without potassium coating within the frequency range of 1800-2200 $cm^{-1}$ at various Rh concentrations, CO pressures, and temperatures. In case of no potassium coating, only two bands at 2070 and 1900 $cm^{-1}$ appeared for CO adsorbed on reduced Rh/$SiO_2$ while for oxidized Rh/$SiO_2$ four bands were found at 2100, 2070, 2040, and 1900 $cm^{-1}$. We have successfully tried to explain the differences between our observations and those by other investigators who used the Rh/$Al_2O_3$ system instead of Rh/$SiO_2$ on the basis of the suggestions by Yates et al. Accordingly, we propose that the surface OH groups are deeply involved in producing the $Rh^{+1}$ sites which are responsible for the gem-dicarbonyl species. On coating with potassium all the IR bands for three carbonyl species were found to suffer red shift, the magnitude of which increased with increasing Rh/CO ratio.

Analysis of severe accident progression and Cs behavior for SBO event during mid-loop operation of OPR1000 using MELCOR

  • Park, Yerim;Shin, Hoyoung;Kim, Seungwoo;Jin, Youngho;Kim, Dong Ha;Jae, Moosung
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.2859-2865
    • /
    • 2021
  • One of the important issues raised from the Fukushima-Daiichi accident is the safety of multi-unit sites when simultaneous accidents occur at the site and recently a multi-unit PSA methodology is being developed worldwide. Since all operation modes of the plant should be considered in the multi-unit PSA, the accident analysis needs to be performed for shutdown operation modes, too. In this study, a station blackout during the mid-loop operation is selected as a reference scenario. The overall accident progression for the mid-loop operation is slower than that for the full-power operation because the residual heat per mass of coolant is about 6 times lower than that in the mid-loop scenario. Though the fractions of Cs released from the core to the RCS in both operation modes are almost the same, the amount of Cs delivered to the containment atmosphere is quite different due to the chemisorption in the RCS. While 45.5% of the initial inventory is chemisorbed on the RCS surfaces during the full-power operation, only 2.2% during the mid-loop operation. The containment remains intact during the mid-loop operation, though 83.9% of Cs is delivered to the containment.