• Title/Summary/Keyword: Chemical-structural properties

Search Result 965, Processing Time 0.028 seconds

Synthesis of Li1.6[MnM]1.6O4 (M=Cu, Ni, Co, Fe) and Their Physicochemical Properties as a New Precursor for Lithium Adsorbent (Li1.6[MnM]1.6O4(M=Cu, Ni, Co, Fe)의 합성 및 리튬 흡착제용 신규 전구체로서의 물리화학적 성질)

  • Kim, Yang-Soo;Moon, Won-Jin;Jeong, Soon-Ki;Won, Dae-Hee;Lee, Sang-Ro;Kim, Byoung-Gyu;Chung, Kang-Sup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.10
    • /
    • pp.4660-4665
    • /
    • 2011
  • New precursors as a Li adsorbent, $Li_{1.6}(MnM)_{1.6}O_4$ (M=Cu, Ni, Co, Fe), were synthesized by hydrothermal method and their physicochemical properties were discussed. XRD and HRTEM results revealed that the original spinel structure was stabilized by cobalt-doping while Cu-, Ni- and Fe-doping led to structural changes. Such a structural stabilization by Cobalt-doping was maintained after lithium leaching by acid treatment. Li absorption efficiency from seawater was significantly enhanced by using the Cobalt-doped spinel manganese oxide, $Li_{1.6}[MnCo]_{1.6}O_4$, compared to the commercially available $Li_{1.33}Mn_{1.67}O_4$; the adsorbed amount of Li from 1g-adsorbent was 35 and 16 mg by $Li_{1.6}[MnCo]_{1.6}O_4$, and $Li_{1.33}Mn_{1.67}O_4$, respectively.

Properties of Non-Sintered Cement Pastes Immersed in Sea Waters at Different Temperatures for Binders Mixed with Different Ratios (침지된 해수 온도 및 결합재 혼합비에 따른 비소성 시멘트의 강도 특성)

  • Jun, Yubin;Kim, Tae-Wan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.5
    • /
    • pp.75-84
    • /
    • 2016
  • This paper presents an investigation of the mechanical properties on non-sintered cement pastes immersed in sea waters at three different temperatures. The non-sintered cement pastes were synthesized using blended binder(Class F fly ash; FA and ground granulated blast furnace slag; GGBFS) and alkali activator(sodium hydroxide and sodium silicate). Binders were prepared by mixing the FA and GGBFS in different blend weight ratios of 6:4, 7:3 and 8:2. The alkali activators were used 5wt% of blended binder, respectively. Calcium carbonate was used as an chemical additive. The compressive strength, bulk density and absorption of alkali-activated FA-GGBFS blends pastes were measured at 3 and 28 days after immersed in sea waters at three different temperatures($5^{\circ}C$, $15^{\circ}C$ and $25^{\circ}C$). The XRD and SEM tests of the pastes were conducted at 28 days. Water-soluble chloride(free chloride) and acid-soluble chloride(total chloride) contents in the pastes were also measured after 28 days immersion in sea water. The experimental results showed that increasing the content of FA in alkali-activated FA-GGBFS blends pastes immersed in sea water increases the absorption, water-soluble chloride content and acid-soluble chloride content, and reduces the compressive strength and bulk density. And it was found that there was a variation of strength change for the alkali-activated FA-GGBFS blends pastes immersed in sea waters at three different temperatures that depends on the blending ratio of FA and GGBFS.

Preparation of Pd/TiO2 Catalyst Using Room Temperature Ionic Liquids for Aerobic Benzyl Alcohol Oxidation (상온 이온성액체를 이용한 호기성 벤질 알코올 산화반응용 Pd/TiO2 촉매 제조)

  • Cho, Tae Jun;Yoo, Kye Sang
    • Applied Chemistry for Engineering
    • /
    • v.26 no.3
    • /
    • pp.351-355
    • /
    • 2015
  • $Pd/TiO_2$ catalysts for aerobic benzyl alcohol oxidation were synthesized and eight different room temperature ionic liquids were used to control the palladium properties as active sites. $Pd/TiO_2$ particles were also calcined at 300, 400 and $500^{\circ}C$ to obtain an optimum catalyst. As the calcination temperature increased, the surface area and pore volume of catalyst decreased, but negligible changes were observed for the pore size of catalyst. However, the structural properties of catalyst varied with respect to the type of ionic liquids. Under identical reaction conditions, different catalytic activities were obtained depending upon the calcination temperature and type of ionic liquids. Mostly, the catalyst calcined at $400^{\circ}C$ showed higher catalytic activity than those at other temperatures. However, the catalyst prepared with 1-octyl-3-methylimidazolium hexafluorophosphate and 1-octyl-3-methylimidazolium trifluoromethanesulfonate showed good catalytic performance after calcination at $300^{\circ}C$. Among the catalyst, $Pd/TiO_2$ prepared with 1-octyl-3-methylimidazolium tetrafluoroborate and calcined at $400^{\circ}C$ showed the highest catalytic activity.

Sol-Gel Synthesis, Crystal Structure, Magnetic and Optical Properties in ZnCo2O3 Oxide

  • Das, Bidhu Bhusan;Barman, Bittesh
    • Journal of the Korean Chemical Society
    • /
    • v.63 no.6
    • /
    • pp.453-458
    • /
    • 2019
  • Synthesis of ZnCo2O3 oxide is performed by sol-gel method via nitrate-citrate route. Powder X-ray diffraction (XRD) study shows monoclinic unit cell having lattice parameters: a = 5.721(1) Å, b = 8.073(2) Å, c = 5.670(1) Å, β = 93.221(8)°, space group P2/m and Z = 4. Average crystallite sizes determined by Scherrer equation are the range ~14-32 nm, whereas SEM micrographs show nano-micro meter size particles formed in ZnCo2O3. Endothermic peak at ~798 K in the Differential scanning calorimetric (DSC) trace without weight loss could be due to structural transformation and the endothermic peak ~1143 K with weight loss is due to reversible loss of O2 in air atmosphere. Energy Dispersive X-ray (EDX) analysis profile shows the presence of elements Zn, Co and O which indicates the purity of the sample. Magnetic measurements in the range of +12 kOe to -12 kOe at 10 K, 77 K, 120 K and at 300 K by PPMS-II Physical Property Measurement System (PPMS) shows hysteresis loops having very low values of the coercivity and retentivity which indicates the weakly ferromagnetic nature of the oxide. Observed X-band EPR isotropic lineshapes at 300 K and 77 K show positive g-shift at giso ~2.230 and giso ~2.217, respectively which is in agreement with the presence of paramagnetic site Co2+(3d7) in the oxide. DC conductivity value of 2.875 ×10-8 S/cm indicates very weakly semiconducting nature of ZnCo2O3 at 300 K. DRS absorption bands ~357 nm, ~572 nm, ~619 nm and ~654 nm are due to the d-d transitions 4T1g(4F)→2Eg(2G), 4T1g(4F)→4T1g(4P), 4T1g(4F)→4A2g(4F), 4T1g(4F)→4T2g(4F), respectively in octahedral ligand field around Co2+ ions. Direct band gap energy, Eg~ 1.5 eV in the oxide is obtained by extrapolating the linear part of the Tauc plot to the energy axis indicates fairly strong semiconducting nature of ZnCo2O3.

Chemical and Electronic structures of $Co_{1-x}Ga_x$ alloys by X-ray Analyses (X-선을 이용한 $Co_{1-x}Ga_x$ 합금계의 화학구조와 전자구조)

  • 유권국;이주열;지현배;이연승
    • Journal of the Korean Vacuum Society
    • /
    • v.13 no.2
    • /
    • pp.86-91
    • /
    • 2004
  • Transiton-metal gallides attract wide interest as a candidate for high-temperature structural materials. In a wide composition range, in which it was known that Co-Ga alloy have CsCl (B2) crystallographic structure, a systematic study on the correlation between physical properties and electronic structures of Co-gallides was performed. $Co_{l-x}Ga$ $_{x}$ alloys ($0.35\leq$x$\leq0.55$) were prepared by arc-melting method and were annealed at $1000 ^{\circ}C$ for 48hour to increase the homogeneity. In this composition range all the prepared alloys have the CsCl (B2) structure. The chemical states and the electronic structure were studied by using x-ray photoemission spectroscopy (XPS), and x-ray absorption near-edge structure (XANES), and exhibit different physical properties depending on the composition. During the annealing, a significant oxidation has happened and all the oxygen atoms are incorporated with the Ga atoms to form a $Ga_2O_3$ phase. In a view point of electronic structure, the $Co_{l-x}Ga$ $_{x}$ alloys were formed by the Ga(p) - Co(d) hybridization.

Compressive Properties of Ultra High Strength Concrete Exposed to High Temperature (고온에 노출된 초고강도 콘크리트의 압축특성)

  • Kang, Yong-Hak;Kang, Choong-Hyun;Choi, Hyun-Guk;Shin, Hyun-Jun;Kim, Wha-Jung
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.3
    • /
    • pp.377-384
    • /
    • 2014
  • Recently, the trend toward larger architectural structures continues and accelerates demand for Ultra High Strength Concrete (UHSC) which satisfies structural performance. However, UHSC has weakness in fire and the performance tests are required. In this paper, the change of mechanical properties of 100 MPa grade UHSC exposed to high temperatures ($20^{\circ}C{\sim}800^{\circ}C$) was observed to develop high temperature material model of UHSC: residual compressive strength, modulus of elasticity, property of stress-strain on monotonous loading and property of stress-strain on cyclic loading. In addition, TG/DTA and SEM Images analyses were performed to investigate chemical and physical characteristics of UHSC, and the results of this research were compared with those of previous studies. As a result, UHSC at the heating temperature of $300^{\circ}C$ showed a sharp decrease of residual compressive strength and modulus of elasticity. And It was shown that UHSC had a plastic behavior at more than $400^{\circ}C$ on the cyclic loading and revealed a same tendency in both monotonous and cyclic loading of all heating temperatures. In addition, through TG/DTA and SEM images analyses compared with those from previous studies, it was shown that the deterioration of concrete inner tissue, water evaporation and chemical reaction caused the decrease of residual compressive strength and modulus of elasticity.

Variation of Soil Properties by Permeating Injection of Chemical Grouts (약액(藥液)의 침투주입(浸透注入)에 의한 토질성상변화(土質性狀變化))

  • Chun, Byung Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.2 no.4
    • /
    • pp.1-9
    • /
    • 1982
  • Variation of soil properties is studied by permeating injection of chemical grouts, such as cement type, water-glass type and acrylamide type, to the same soil samples with different densities. Moreover, injection tests using specially prepared equipments of 1.0 shot system and 1. 5 shot system are attempted to investigate permeating injection effects in highly compacted soil and in the presence of ground water. The main factor which causes the improvement of cut-off effect and shearing strength is the cohesion of soil. The strength in the loose state is fundamentally governed by the membrane cohesion, meanwhile, in the loose state is governed by the structural cohesion. Injection effects under the ground water flow is considerably decreased, and effective gelling ratio of approximate 45~80% is observed by variation of velocity and gel time, besides grading of injection materials has high relation with permeation and traveling length but has little relation with effective gelling ratio. Permeating injection effects, such as gelling scope, gelling strength in highly compaoted soil conditions can be confirmed by penetration resistance diagram and iso-strength curve.

  • PDF

Structural and Microwave Dielectric Properties of $La(Mg_{1/2}Ti_{1/2})O_3$ Ceramics ($La(Mg_{1/2}Ti_{1/2})O_3$ 세라믹스의 구조 및 고주파 유전 특성 연구)

  • Yeo, Jae-Hyun;Baek, Jong-Hu;Nham, Sahn;Lee, Hwack-Joo;Park, Hyun-Min;Byun, Jae-Dong
    • Korean Journal of Materials Research
    • /
    • v.9 no.9
    • /
    • pp.943-947
    • /
    • 1999
  • The crystal structure and the microwave dielectric properties of $La(Mg_{1/2}Ti_{1/2})O_3$ ceramics have been investigated. $La(Mg_{1/2}Ti_{1/2})O_3$ has the 1:1 ordered monoclinic structure with the lattice parameters of $a = 5.5467(3){\AA}, b = 5.5616(3){\AA}, c = 7.8426(5) {\AA} and \beta = 89.9589 (2)^{\circ}$ The spacegroup of LMT is $P2_1/n$. Monoclinic LMT has the in­phase and anti-phase tilting of octahedra with the $a^_a^_c^_$ tilting system. Anti-parallel shift of A-site cations was also found in LMT. The relative density of the specimens sintered above $1600^{\circ}C$ was ranged between 95 % and 96 % of the theoretical density and the dielectric constant of specimens was about 28. The highest $Q\timesf$ achieved in this investigation was 63,100 for the specimen sintered at $1630^{\circ}C$ for 5 hr. Temperature coefficient of resonance frequency ranged from $>-74 ppm/^{\circ}C ~ -79 ppm/^{\circ}C$.

  • PDF

3-D Analysis of Semiconductor Surface by Using Photoacoustic Microscopy (광음향 현미경법을 이용한 반도체 표면의 3차원적 구조 분석)

  • Lee, Eung-Joo;Choi, Ok-Lim;Lim, Jong-Tae;Kim, Ji-Woong;Choi, Joong-Gill
    • Journal of the Korean Chemical Society
    • /
    • v.48 no.6
    • /
    • pp.553-560
    • /
    • 2004
  • In this experiment, a three dimensional structure analysis was carried out to examine the surface defects of semiconductor made artificially on known scale. It was investigated the three dimensional imaging according to the sample depth and the thermal diffusivity as well as the carrier transport properties. The thermal diffusivity measurement of the intrinsic GaAs semiconductor was also analyzed by the difference of frequency-dependence photoacoustic signals from the sample surface of different conditions. Thermal properties such as thermal diffusion length or thermal diffusivity of the Si wafer with and without defects on the surface were obtained by interpreting the frequency dependence of the PA signals. As a result, the photoacoustic signal is found to have the dependency on the shape and depth of the defects so that their structure of the defects can be analyzed. This method demonstrates the possibility of the application to the detection of the defects, cracks, and shortage of circuits on surface or sub-surface of the semiconductors and ceramic materials as a nondestructive testing(NDT) and a nondestructive evaluation(NDE) technique.

Improvement of Polycarbonate Properties by Coating of TiO2 and SiO2 Thin Film (TiO2/SiO2 박막 코팅에 의한 폴리카보네이트 특성 개선)

  • Won, Dong So;Lee, Won Gyu
    • Applied Chemistry for Engineering
    • /
    • v.25 no.1
    • /
    • pp.41-46
    • /
    • 2014
  • The property improvement of polycarbonate coated with a multilayer film composed of an inorganic $SiO_2$ film and a photocatalytic $TiO_2$ film was studied. The $SiO_2$ film as a binder had an excellent light transmission characteristic. After the treatment with atmospheric pressure plasma, the surface of $SiO_2$ film showed the hydrophilicity, which increased the film coating uniformity with a $TiO_2$-containing aqueous solution. When $TiO_2$ film was over 200 nm thick, the absorption effect of UV rays in the range of 180~400 nm suppressed the yellowing phenomena of polycarbonate substrate. The inorganic film improved the heat resistance of polycarbonate substrates. $TiO_2$ film in the outmost under the exposure of UV rays promotes the catalytic oxidation characteristics and yields the capability to the decomposition of organic contaminants, and also increases the self-cleaning properties due to the increase of hydrophilicity. Structural stability of the polycarbonate substrate coated with inorganic $TiO_2$ and $SiO_2$ film was shown. The role of $SiO_2$ film between $TiO_2$ and polycarbonate substrate suppressed the peeling of $TiO_2$ film by inhibiting the photocatalytic oxidation effect of $TiO_2$ film on the polycarbonate substrate.