• Title/Summary/Keyword: Chemical-structural properties

Search Result 976, Processing Time 0.027 seconds

J-aggregates of Merocyanine Dye : formation and structural change on chemical and thermal treatments (메로시아닌 색소의 J-회합체 ; 형성과 열.화학적인 처리에 의한 변화)

  • Shin, Hoon-Kyu;Kwon, Young-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1998.07d
    • /
    • pp.1398-1400
    • /
    • 1998
  • The physical properties of the LB films with merocyanine dyes have been published and attract attention due to the possibility of molecular structure control. The evaluation of the thin films was focused for the purpose of molecular structure control. The molecular structure in the case of the thin films with dyes can be examine by optical absorption spectra measurements. In the case of optical absorption spectra of the LB films by the heat treatment at $70^{\circ}C$ in the air, both of the shifted absorption bands decay and a monomer absorption peak of about 530 nm appears instead. And, the formation and dissociation of J-aggregates, anisotropic behavior was no longer observed in the heat treated merocyanine dyes LB films. In the results, study of the merocyanine dyes LB films using optical absorption spectra would an interesting problem of absorption peak shifts and mixed components.

  • PDF

Characterization of Cu/cordierite Interfaces by STEM (STEM에 의한 구리와 코디에라이트 접촉면의 특성 연구)

  • Han, Byung-Sung
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.10
    • /
    • pp.101-105
    • /
    • 1990
  • The use of a sol-gel processed cordierite precursor sinterable about$900^{\circ}C$ allows cosintering of the copper and the ceramic. A strong bonding between the copper film and the cordierite substrate can be achieved through an eutectic bonding technique. These interfaces were investigated using STEM. copper diffusion as well as strong chemical and structural modifications was observed in the interface region. Although these interfaces have good adhesion properties, there was no evidence of the formation of the copper compound at the interface.

  • PDF

A Study for Quality Stabilization of Ball-Seat - II (볼 시트 품질안정화에 관한 연구 - II)

  • 강태호;김영수;정영득;김인관
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.346-349
    • /
    • 2001
  • Nowadays the amount of plastic products is increasing in modern industry. Plastic materials are continuously developed to satisfy the mechanical, physical, and chemical properties. The increasing application of plastic parts in automobile and aerospace industries is due to the fact that it can reduce the structural weight and can lessen the environmental contamination. Among many manufacturing technologies for plastic parts, the injection molding process is very attractive because of its low cost and short production time. Through various analyses of resin flow and molding process for the conventional gate and cooling mechanism, a new type of mold was designed which had different gate location and cooling systems. Newly designed ball seat has an excellent performances, i.e. diminished weld-line, residual stress density, higher magnitude less crack propagation and smaller dimensional contractions effect.

  • PDF

Recent Advances in Polybenzimidazole (PBI)-based Polymer Electrolyte Membranes for High Temperature Fuel Cell Applications

  • Vijayakumar, Vijayalekshmi;Kim, Kihyun;Nam, Sang Yong
    • Applied Chemistry for Engineering
    • /
    • v.30 no.6
    • /
    • pp.643-651
    • /
    • 2019
  • Polybenzimidazole (PBI), an engineering polymer with well-known excellent thermal, chemical and mechanical stabilities has been recognized as an alternative to high temperature polymer electrolyte membranes (HT-PEMs). This review focuses on recent advances made on the development of PBI-based HT-PEMs for fuel cell applications. PBI-based membranes discussed were prepared by various strategies such as structural modification, cross-linking, blending and organic-inorganic composites. In addition, intriguing properties of the PBI-based membranes as well as their fuel cell performances were highligted.

Fracture behavior using AE method and reliability assessment of CFRP based on absorbed moisture (흡습된 CFRP의 AE에 의한 파과거동과 신뢰성 평가)

  • 남기우;김선진
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.38-50
    • /
    • 1996
  • Recently carbon fiber reinforced plastic (CFRP) has been used structural materials in corrosive environment such as for water, chemical tank and pipes. However, mechanical properties of such materials may be change when CFRP and exposed to corrosive environment for long periods of time. The degradation behavior of carbon fiber/epoxy resin composite material in distilled water is investigated using acoustic emission (AE) technique, Fracture toughness tests are performed on the compact tension specimens that are pilled by two types of $[O_2/9O_2]_{3s}$ and $[O/9O]_6s$. During the testes, AE test was carried out to monitor the damage of CFRP by moisture absorption. The data was treated by 2-parameter Weibull distribution and the fracture surface was observed by scanning electron microscope.

  • PDF

Characteristic of Tantalum Nitride Thin-films for High Precision Resistors (고정밀 저항용 질화탄탈 박막의 특성)

  • Choi, Sung-Kyu;Na, Kyung-Il;Nam, Hyo-Duk;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.537-540
    • /
    • 2001
  • This paper presents the characteristics of Ta-N thin-film for high precision resistors, which were deposited on Si substrate by DC reactive magnetron sputtering in an argon-nitrogen atmosphere(Ar-(4~16 %)$N_2$). Structural properties studied using X-ray diffraction(XRD) indicate the presence of TaN, $Ta_3N_5$ or a mixture of Ta-N phases in the films depending on the amount of nitrogen in the sputtering gas. The chemical composition are investigated by auger electro spectroscopy(AES). The optimized conditions of Ta-N thin-film resistors were deposited in 4 % $N_2$ gas flow ratio. Under optimum conditions, the Ta-N thin-film resistors are obtained a high resistivity, $\rho=305.7{\mu}{\Omega}cm$, a low temperature coefficient of resistance, TCR=-36 $ppm/^{\circ}C$.

  • PDF

Al계 준결정 분말의 제조 및 응용

  • Kim, W. T.;Kim, D.H.;Lee, S.M.;E.Fleury;H.S. Ahn
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2002.07a
    • /
    • pp.133-155
    • /
    • 2002
  • 1. Quasicrystalline powders shows exotic physical and mechanical p properties 2. Applications: structural application: strengthening particles for composites C Coating application: wear resistance, low friction coefficient 3. For thermal spaying: material loss during process should be c considered to control chemical composition of deposit 4. Friction coefficient is strongly dependent on contact geometry F Friction coefficient from pin on plate: 0.1-0.2 Friction coe야icient from flat on plate: about 0.46. 5. Quasicrystalline materials show lower friction coefficient but higher w wear rate than corresponding values of $Cr_20_3$ coated layer. 6. Amorphous coating seems to be promising

  • PDF

Development of nano/micro forming and evaluation technology of Zr-base bulk metallic glass (Zr계 벌크 비정질 합금의 미세성형 및 평가기술 개발)

  • Ok M.-R.;Suh J. Y.;Chung S. J.;Hong K. T.;Ji Y. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.44-47
    • /
    • 2004
  • Although bulk metallic glasses have many outstanding aspects in their chemical, mechanical or functional properties, some critical problems still hinder their wide application. The most important one is the brittle nature of them, which is the serious problem to structural application. So, to use viscous flow is now the only competent way to form bulk metallic glass. In this study, we investigated the basic nature of viscous flow of Zr-base bulk metallic glass, vitrelloy 1, in terms of process variables. The results were used to design the thermo-mechanical process composed of heating, holding, pressing, and cooling, which have unique influence on the glass transition and crystallization behavior. We adopted small load scale and dies with nano/micro patterns on them. The results were evaluated using several analytical methods.

  • PDF

A Study on Material Characterization of SMC (SMC의 물성치 평가에 관한 연구)

  • 정진호;한영원;임용택
    • Transactions of Materials Processing
    • /
    • v.4 no.3
    • /
    • pp.245-256
    • /
    • 1995
  • SMC(Sheet Molding Compound), a thermoset composite material which consists of unsaturated polyester resin, fiberglass strands, fillers, and various chemical additives for curing agent, has been widely used in fabrication of structural components. The mechanical properties of molded SMS parts are strongly dependent on material flow results during compression molding process, while such flow in molds is affected by material characteristics. For numerical simulation of SMC molding process, estimation of material property of SMC must be accomplished. In this study, flow resistance of SMC was estimated through a simple compression test using a lubricant with grease oil under the constant strain rate condition at various temperatures and the result was compared with other material data available in the literature. The accuracy of the experimentally determined flow resistance was tested by finite element analyses of compression molding of SMC. Simulation results were compared with experimental results under the plane strain condition.

  • PDF

An Effectiveness of Temperature-Dependency Thermal Properties in Transient Thermal Analysis of Concrete Structures Exposed to Fire (화재시 콘크리트의 열특성계수가 비정상 열전달해석에 미치는 영향)

  • Lee, Jae-Young;Han, Byung-Chan;Kim, Jae-Hwan;Kwon, Young-Jin
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.11-14
    • /
    • 2008
  • This paper is currently being conducted to develop a nonlinear finite element analysis methods for predicting the structural behavior of reinforced concrete structures, exposed to fire. The changes in thermal parameters are discussed from the point of view of changes of structure and chemical composition due to the high temperature exposure. Although, this study considers codes standard fire for reinforced concrete frame, any other time-temperature relationship can be easily incorporated.

  • PDF