• Title/Summary/Keyword: Chemical-structural properties

Search Result 965, Processing Time 0.03 seconds

Synthesis of $LiCoO_{2}$ powders from precursors prepared by precipitation process

  • Park, Cheong-Song;La, Jung-In;Kim, Do-Youn
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.12 no.2
    • /
    • pp.87-90
    • /
    • 2002
  • $LiCoO_{2}$ powders were synthesized at various temperatures using lithium hydroxide and cobalt hydroxide as precursors prepared by precipitation process and freeze-drying. In this study, the$LiCoO_{2}$ samples were synthesized via a solid state reaction with various LiOH concentration between 10 % and 30 % excess. And $LiCoO_{2}$powders were calcined at 600~$800^{\circ}C$ in a short time. Measurements of XRD and SEM were performed to characterize the properties of the prepared materials. The effect of amount of Li ions on the structural change in powder has been examined using the XRD analysis. For the not added excess of LiOH, CoOOH phase presented in the XRD pattern of $LiCoO_{2}$ due to loss of Li ions during firing. The morphology and particle size of the powders were examined using SEM. The obtained powders are high temperature-$LiCoO_{2}$HT-LiCoO$_{2}$) and homogeneous with the range of grain size in the order of hundreds of nanometers. The effects of variation of LiOH concentration on the structural change in powder were investigated using the Rietveld analysis. As an analysis result, c/a is constant by 4.99 on all occasions. Finally, the structure of HT-$LiCoO_{2}$ was simulated by the commercial software $Creius^{2}$(Molecular Simulations, Inc.) from the results of Rietveld analysis.

Effects of Structural Difference of Ionic Liquids on the Catalysis of Horseradish Peroxidase

  • Hong, Eun-Sik;Park, Jung-Hee;Yoo, Ik-Keun;Ryu, Keun-Garp
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.7
    • /
    • pp.713-717
    • /
    • 2009
  • The dependence of the catalytic properties of horseradish peroxidase on the structural changes of ionic liquids was investigated with two water-miscible ionic liquids, N-butyl-3methypyridinium tetraftuoroborate ([$BMP_y$][$BF_4$]) and 1-butyl-3-methylimidazolium methylsulfate ([BMIM][$MeSO_4$]), each of which shares an anion ($BF_4^-$) or a cation ($BMIM^+$) with 1-butyl-3-methylimidazolium tetraftuoroborate ([BMIM][$BF_4$]), respectively. The oxidation of guaiacol (2-methoxyphenol) with $H_2O_2$was used as a model reaction. In order to minimize the effect of solution viscosity on the kinetic constants of the enzymatic catalysis, the enzymatic reactions for the kinetic study were performed in water-ionic liquid mixtures containing 25% (v/v) ionic liquid at maximum. Similarly to the previously reported results for [BMIM][$BF_4$], as the concentration of [$BMP_y$][$BF_4$] increased, the $K_m$value increased with a decrease in the $k_{cat}$value: the $K_m$value increased markedly from 2.8 mM in 100% water to 12.6 mM in 25% (v/v) ionic liquid, indicating that ionic liquid significantly weakens the binding affinity of guaiacol to the enzyme. On the contrary, [BMIM][$MeSO_4$] decreased the Km value to 1.4 mM in 25% (v/v) ionic liquid. [BMIM][$MeSO_4$] also decreased $k_{cat}$more than 3-folds [from 13.8 $s^{-1}$in 100% water to 4.1 $s^{-1}$in 25% (v/v) ionic liquid]. These results indicate that the ionic liquids interact with the enzyme at the molecular level as well as at a macroscopic thermodynamic scale. Specifically, the anionic component of the ionic liquids influenced the catalysis of horseradish peroxidase in different ways.

Durability Characteristics of Limestone Powder added Concrete for Environment-Friendly Concrete (석회석미분말을 첨가한 친환경 시멘트콘크리트의 내구 특성)

  • Choi, Woo Hyeon;Park, Cheol Woo;Jung, Won Kyung;Jeon, Beom Joon;Kim, Gyu Seon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.5
    • /
    • pp.59-67
    • /
    • 2012
  • During the manufacturing of Portland cement, CO2 gas is also necessarily produced through both decarbonation of calcium carbonate and kiln burning. By partially replacing the Portland cement with limestone powder, which is an inert filler in a concrete mixture, CO2 consumption can be reduced in a construction field. This study is to investigate the fundamental durability characteristics of limestone powder added concrete. Experimental variable was the replacement ratio of limestone powder from 0% to 25% with 5% increment. Durability characteristics were investigated by resistance to freeze-thaw, alkali-silica reaction and de-icing chemical in addition to the properties of fresh concrete. From test results, it was observed that the addition of limestone powder did not significantly affect the resistance to freeze-thaw reaction and de-icing chemical. The addition of limestone powder reduced the occurrence potential of alkali-silica reaction by reducing an alkali content in Portland cement.

A Study on the Change of Strength of FRP Member Immersed in Chemical Solution (화학약품용액에 침지한 FRP 부재의 강도 변화에 대한 연구)

  • Kim, Ho-Sun;Kim, Woo-Jong;Jang, Hwa-Sup;Kwak, Kae-Hwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.6
    • /
    • pp.117-123
    • /
    • 2010
  • If FRP materials that have been known as high durability materials are exposed to harmful environmental factors, deterioration and characteristics of materials can be reduced due to chemical reaction such as hydrolysis. Therefore, to use FRP materials as building major materials, it is important to exactly grasp dynamic properties by use condition. Accordingly, this study stored FRP materials in a strong acid and alkali compound solution for a certain period to conduct simulation for acute or chronic, extreme changes by chemicals, and conducted a test for compressive, tensile, shear and bending strength to analyze changes in strength by kinds and storage days of chemicals. In conclusion, the study findings indicate excellent chemical resistance of FRP materials.

One-Step β-Li2SnO3 Coating on High-nickel Layered Oxides via Thermal Phase Segregation for Li-ion Batteries

  • Seongmin Kim;Hanseul Kim;Sung Wook Doo;Hee-Jae Jeon;In Hye Kim;Hyun-seung Kim;Youngjin Kim
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.293-300
    • /
    • 2023
  • The global energy storage markets have gravitated to high-energy-density and low cost of lithium-ion batteries (LIBs) as the predominant system for energy storage such as electric vehicles (EVs). High-Ni layered oxides are considered promising next-generation cathode materials for LIBs owing to their significant advantages in terms of high energy density. However, the practical application of high-Ni cathodes remains challenging, because of their structural and surface instability. Although extensive studies have been conducted to mitigate these inherent instabilities, a two-step process involving the synthesis of the cathode and a dry/wet coating is essential. This study evaluates a one-step β-Li2SnO3 layer coating on the surface of LiNi0.8Co0.2O2 (NC82) via the thermal segregation of Sn owing to the solubility limit with respect to the synthesis temperature. The doping, segregation, and phase transition of Sn were systematically revealed by structural analyses. Moreover, surface-engineered 5 mol% Sn-coated LiNi0.8Co0.2O2 (NC82_Sn5%) exhibited superior capacity retention compared to bare NC82 owing to the stable surface coating layer. Thus, the developed one-step coating method is suitable for improving the properties of high-Ni layered oxide cathode materials for application in LIBs.

Adipic Acid Assisted Sol-Gel Synthesis of Li1+x(Mn0.4Ni0.4Fe0.2)1-xO2 (0 < x < 0.3) as Cathode Materials for Lithium Ion Batteries

  • Karthikeyan, Kaliyappan;Amaresh, Samuthirapandian;Son, Ju-Nam;Kim, Shin-Ho;Kim, Min-Chul;Kim, Kwang-Jin;Lee, Sol-Nip;Lee, Yun-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.1
    • /
    • pp.89-94
    • /
    • 2013
  • Layered $Li_{1+x}(Mn_{0.4}Ni_{0.4}Fe_{0.2})_{1-x}O_2$ (0 < x < 0.3) solid solutions were synthesized using solgel method with adipic acid as chelating agent. Structural and electrochemical properties of the prepared powders were examined by means of X-ray diffraction, Scanning electron microscopy and galvanostatic charge/discharge cycling. All powders had a phase-pure layered structure with $R\bar{3}m$ space group. The morphological studies confirmed that the size of the particles increased at higher x content. The charge-discharge profiles of the solid solution against lithium using 1 M $LiPF_6$ in EC/DMC as electrolyte revealed that the discharge capacity increases with increasing lithium content at the 3a sites. Among the cells, $Li_{1.2}(Mn_{0.32}Ni_{0.32}Fe_{0.16})O_2$ (x = 0.2)/$Li^+$ exhibits a good electrochemical property with maximum initial capacity of 160 $mAhg^{-1}$ between 2-4.5 V at 0.1 $mAcm^{-2}$ current density and the capacity retention after 25 cycles was 92%. Whereas, the cell fabricated with x = 0.3 sample showed continuous capacity fading due to the formation of spinel like structure during the subsequent cycling. The preparation of solid solutions based on $LiNiO_2-LiFeO_2-Li_2MnO_3$ has improved the properties of its end members.

Change of Electrochemical Characteristics Due to the Fe Doping in Lithium Manganese Oxide Electrode

  • Ju Jeh Beck;Kang Tae Young;Cho Sung Jin;Sohn Tae Won
    • Journal of the Korean Electrochemical Society
    • /
    • v.7 no.3
    • /
    • pp.131-137
    • /
    • 2004
  • Sol-gel method which provides better electrochemical and physiochemical properties compared to the solid-state method was used to synthesize the material of $LiFe_yMn_{2-y}O_4$. Fe was substituted to increase the structural stability so that the effects of the substitution amount and sintering temperature were analyzed. XRD was used for the structural analysis of produced material, which in turn, showed the same cubic spinel structure as $LiMn_2O_4$ despite the substitution of $Fe^{3+}$. During the synthesis of $LiFe_yMn_{2-y}O_4$, as the sintering temperature and the doping amount of Fe(y=0.05, 0.1, 0.2)were increased, grain growth proceeded which in turn, showed a high crystalline and a large grain size, certain morphology with narrow specific surface area and large pore volume distribution was observed. In order to examine the ability for the practical use of the battery, charge-discharge tests were undertaken. When the substitution amount of $Fe^{3+}\;into\;LiMn_2O_4$ increased, the initial discharge capacity showed a tendency to decrease within the region of $3.0\~4.2V$ but when charge-discharge processes were repeated, other capacity maintenance properties turned out to be outstanding. In addition, when the sintering temperature was $800\~850^{\circ}C$, the initial capacity was small but showed very stable cycle performance. According to EVS(electrochemical voltage spectroscopy) test, $LiFe_yMn_{2-y}O_4(y=0,\;0.05,\;0.1,\;0.2)$ showed two plateau region and the typical peaks of manganese spinel structure when the substitution amount of $Fe^{3+}$ increased, the peak value at about 4.15V during the charge-discharge process showed a tendency to decrease. From the previous results, the local distortion due to the biphase within the region near 4.15V during the lithium extraction gave a phase transition to a more suitable single phase. When the transition was derived, the discharge capacity decreased. However the cycle performance showed an outstanding result.

Improvement in Adhesion Properties of Epoxy/Polyamide/MPD Reactive Blends by means of AP Plasma Treatment and Morphological Tuning (상압 플라즈마 표면처리와 형태학적 조절에 의한 에폭시/폴리아미드/MPD 반응성 블렌드의 접착력 향상)

  • Song, Hyun-Woo;Kang, Hak-Su;Kim, Won-Ho;Marzi, Stephan;Kim, Byung-Min;Choe, Young-Son
    • Polymer(Korea)
    • /
    • v.33 no.4
    • /
    • pp.284-289
    • /
    • 2009
  • The morphology and mechanical properties of epoxy/polyamide/MPD reactive blends with various amount of polyamide were investigated. The cure behaviors, mechanical strengths, and morphological changes of the epoxy blend systems were analyzed by using DSC, UTM, and SEM, respectively. The amount of high soluble polyamide in epoxy ranged from 0 to 30 phr, and the cure reaction occurred at $170^{\circ}$ for 30 min. The start and maximum exothermic temperature in heat flows during cure reactions appeared at almost same temperature, indicating that soluble polyamide could rarely hinder the cure reactions. From the SEM images, it was found that the size of separated-phase was very fine about 100-300 nm, and at 20 phr of polyamide the boundary of separated-phase was unclear and the phase revealed co-continuous. By AP plasma treatment of specimen surface, the adhesion strength was increased by 20% due to enhanced surface free energy. By blending 20 phr of polyamide with epoxy, the adhesion strength was increased by 50% due to co-continuous phase in morphology. By considering the surface treatment of specimen and morphological tuning of the blends, it can be expected that the improvement in toughness and excellent adhesion strength can be achieved in structural adhesive systems.

Photoelectrocatalytic Degradation of Dyes in Aqueous Solution Using CNT/TiO2 Electrode

  • Zhang, Feng-Jun;Liu, Jin;Chen, Ming-Liang;Oh, Won-Chun
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.3
    • /
    • pp.263-270
    • /
    • 2009
  • The effect of photoelectrocatalytic (PEC) degradation for different dyes with the CNT/$TiO_2$ electrode was studied. The prepared electrode was characterized with surface properties, structural crystallinity, elemental identification, and PEC activity. The $N_2$ adsorption data showed that the composites had decreased surface area compared with the pristine CNT. This indicated the blocking of micropores on the surface of CNT, which was further supported by observation via FESEM. XRD patterns of the composites showed that the CNT/$TiO_2$ composite contained a mixing anatase and rutile phase. EDX spectra showed the presence of C, O and Ti peaks for all samples. The decomposition efifciency of the prepared electrode was evaluated by the PEC degradation of three dyes (methylene blue (MB), rhodamine B (RH.B), methyl orange (MO)). The variations of the FT-IR spectra and pH value of dye solutions were measured during the PEC system; it was found that the CNT/$TiO_2$ electrode has better PEC degradation for MB solution than that of RH.B and MO. The proposed degradation mechanism was present.

Carbon Nanotube Synthesis and Growth Using Zeolite by Catalytic CVD and Applications

  • Zhao, Wei;Nam, Seo Dong;Pokhrel, Ashish;Gong, Jianghong;Kim, Ik Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.1
    • /
    • pp.1-17
    • /
    • 2013
  • Since their first discovery, carbon nanotubes (CNTs) have become a material central to the field of nanotechnology. Owing to their splendid physical, structural and chemical properties, they have the potential to impact a wide range of applications, including advanced ceramics, nanoelectronic devices, nanoscale sensors, solar cells, battery electrodes, and field emitters. This review summarizes the synthetic methods of preparing CNTs and focuses on the chemical vapor deposition (CVD) method, especially catalytic CVD. In order to stabilize and disperse the catalyst nanoparticles (NPs) during synthesis, zeolite was implemented as the template to support metal-containing NPs, so that both CNTs in the bulk and on a 2D substrate were successfully synthesized. Despite more challenges ahead, there is always hope for widespread ever-new applications for CNTs with the development of technology.