• Title/Summary/Keyword: Chemical-structural properties

Search Result 965, Processing Time 0.026 seconds

Physical Properties of the Hardened Loess Using Natural Binding Materials (천연 결합재를 사용한 황토경화체의 물성에 대한 연구)

  • Kim, Jin Seok;Oh, Young Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.4
    • /
    • pp.44-51
    • /
    • 2012
  • In this study, hardened loess bodies, which did not compose of cement or any chemical binder, were made and tested to evaluate the physical properties such as slump, air content, and compressive strength. Addition of a natural binding material to mixture of loess and lime showed better performance in physical properties. However a lime among natural binding materials is considered as a superior binder to improve the properties of the hardened bodies. According to the experimental results, mixing proportion with 45% of W/B ratio, $285kg/m^3$ of water content, and 60% lime substitution ratio was recommended to acquire the good performance of physical properties for the hardened loess bodies.

Effect of VO(II) Doping on Structural and Optical Properties of Diaquamalonato(1,10-phenanthroline)zinc(II)

  • Hema, Ramesh;Parthipan, Krishnan;Ramachitra, Somasundaram;Balaji, Subramanian
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.12
    • /
    • pp.3547-3552
    • /
    • 2013
  • Single crystal EPR and optical studies of a mixed ligand zinc(II) complex doped with VO(II) ion is carried out to establish the structural properties. The angular variation of vanadyl hyperfine lines indicates a single site, with spin Hamiltonian parameters as: $g_{xx}=1.985$, $g_{yy}=1.979$, $g_{zz}=1.943$; $A_{xx}=8.71$, $A_{yy}=6.41$ and $A_{zz}=17.80$ mT. By comparing the direction cosines of principal g and A values with the direction cosines of metalligand bonds, it has been confirmed that the vanadyl ion has entered the lattice interstitially. The exact interstitial position of VO(II) in host lattice has been calculated using the fractional coordinates of atoms in the host lattice out of many assumptions. The EPR and optical data have been confirmed to obtain various bonding parameters, from which the nature of the bonding in the complex is discussed. FT-IR confirms the formation of structure of host lattice.

Deterioration Properties of Shotcrete as Tunnel Supporter was Exposed to Harmful Ions (터널 지보용 숏크리트의 유해이온에 대한 열화특성)

  • Jung, Ho-Seop;Kim, Dong-Gyou
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.5
    • /
    • pp.55-64
    • /
    • 2008
  • Shotcrete have become a deterioration which was exposed to harmful environments. In this study, in order to evaluate the deterioration properties of shotcrete, visual examination, compressive strength, adhesive strength, microstructural analysis were investigated up to the 60th weeks of exposure. The attack solutions for test are sodium sulfate and hydrochloric acid solution with different concentrations, respectively. From the results, although the compressive strength of shotcrete specimens and the adhesive strength between specimens and rocks were high at the early immersion age, they rapidly dropped in the subsequent phases, especially in 5% sodium sulfate and pH1 hydrochloric acid solution. With continued exposure, various harmful ions penetrated into the shotcrete specimen, reacted with the cement hydrate, and generated expansion substances. It was verified that the shotcrete specimens suffered a serious deterioration by chemical attack.

Effect of Conductive Additives on the Structural and Electrochemical Properties of Li4Ti5O12 Spinel

  • Park, Jae-Hwan;Lee, Seongsu;Kim, Sung-Soo;Kim, Jong-Huy
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.12
    • /
    • pp.4059-4062
    • /
    • 2012
  • The effect of a conductive agent on the structural and electrochemical properties of $Li_4Ti_5O_{12}$(LTO) spinel was investigated through neutron diffraction during Li intercalation and electrochemical measurements. The charging process of LTO is known as transformation of the white $(Li_3)_{8a}[LiTi_5]_{16d}O_{12}$ into a dark-colored $(Li_{3-X})_{8a}[Li_{X+Y}]_{16c}[LiTi_5]_{16d}O_{12}$ by incorporating the inserted Li into octahedral 16c sites, and the Li in tetrahedral 8a sites shifted to 16c sites. The occupancy of the tetrahedral 8a site varied with the existence of carbon in the electrode. Without carbon, the lattice parameter and cell volume of LTO decreased more notably than in the carbon-containing LTO electrode during Li insertion process. These phenomena might be attributed that the Li occupancy of the tetrahedral 8a of the LTO electrode without carbon was less than that of the carbon-containing LTO electrode.

Efficiency Factors of Singlet Oxygen Generation from Core-Modified Expanded Porphyric : Tetrathiarubyrin in Ethanol

  • Ha, Jeong Hyeon;Jeong, Guk Yeong;Kim, Min Seon;Lee, Yang Hun;Sin, Gu;Kim, Yong Rok
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.1
    • /
    • pp.63-67
    • /
    • 2001
  • The photophysical properties and the singlet oxygen generation efficiency of tetrathiarubyrin have been investigated to elucidate the possibility of its use as a photodynamic therapy (PDT) photosensitizer by steady-state and time-resolved spectroscopic methods. The observed photophysical properties were affected by various molecular aspects, such as extended ${\pi}conjugation$, structural distortion, and internal heavy atom. The steady-state electronic absorption spectrum was red-shifted due to the extended $\pi-conjugation$, and the spin orbital coupling was enhanced by the structural distortion and the internal heavy atom effect. As a result of the enhanced spin orbital coupling, the triplet quantum yield increased to 0.90 $\pm$ 0.10 and the triplet state lifetime was shortened to 7.0 $\pm$ 1.2 ${\mu}s$. Since the triplet state decays at a relatively faster rate, the efficiency of the oxygen quenching of the triplet state decreases. The singlet oxygen quantum yield was estimated to be 0.52 $\pm$ 0.02, which is somewhat lower than expected. On the other hand, the efficiency of singlet oxygen generation during the oxygen quenching of triplet state, $f{\Delta}^T$, is near unity. Such high efficiency of singlet oxygen generation can be explained by the following two possible factors: The hydrogen bonding of ethanol which impedes the deactivation pathway of the charge transfer complex with oxygen to the ground state, the less probability of the aggregation formation.

Structural and luminescent properties of ZnSe thin films by electrochemical deposition (전기화학적 전착에 의한 ZnSe박막 구조 및 발광특성)

  • Kim, Hwan-Dong;Choi, Kil-Ho;Yoon, Do-Young
    • Journal of the Semiconductor & Display Technology
    • /
    • v.7 no.4
    • /
    • pp.19-22
    • /
    • 2008
  • Thin film has been an increasing important subject of intensive research, owing to the fact that these films possess desirable optical, electrical and electrochemical properties for uses in many semi-conducting nano-crystal applications, such as light-emitting diodes, lasers and solar cell applications. Here, ZnSe thin films were deposited by electrochemical method for the applications of light emitting diode. Electrochemical deposition of ZnSe thin film is not easy, because of the high difference of reduction potential between zinc ion and selenium acid. In order to handle the band gap of ZnSe crystal thin films easily, electrochemical methods are promising to manufacture these films economically. Therefore we have investigated the present study to characterize zinc selenide thin films deposited on ITO glass plates electrochemically. The luminescent properties of ZnSe films have been evaluated by UV-Vis spectrometer and luminescence spectrometer. And the morphology of the film surface has been discussed qualitatively from SEM images.

  • PDF

Polymer brush: a promising grafting approach to scaffolds for tissue engineering

  • Kim, Woonjung;Jung, Jongjin
    • BMB Reports
    • /
    • v.49 no.12
    • /
    • pp.655-661
    • /
    • 2016
  • Polymer brush is a soft material unit tethered covalently on the surface of scaffolds. It can induce functional and structural modification of a substrate's properties. Such surface coating approach has attracted special attentions in the fields of stem cell biology, tissue engineering, and regenerative medicine due to facile fabrication, usability of various polymers, extracellular matrix (ECM)-like structural features, and in vivo stability. Here, we summarized polymer brush-based grafting approaches comparing self-assembled monolayer (SAM)-based coating method, in addition to physico-chemical characterization techniques for surfaces such as wettability, stiffness/elasticity, roughness, and chemical composition that can affect cell adhesion, differentiation, and proliferation. We also reviewed recent advancements in cell biological applications of polymer brushes by focusing on stem cell differentiation and 3D supports/implants for tissue formation. Understanding cell behaviors on polymer brushes in the scale of nanometer length can contribute to systematic understandings of cellular responses at the interface of polymers and scaffolds and their simultaneous effects on cell behaviors for promising platform designs.

Factors Affecting the Magnitude of the Metal-Insulator Transition Temperature in AMo4O6 (A=K, Sn)

  • Jung, Dong-Woon;Choi, Kwang-Sik;Kim, Sung-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.7
    • /
    • pp.959-964
    • /
    • 2004
  • A low-dimensional metal frequently exhibits a metal-insulator transition through a charge-density-wave (CDW) or a spin-density-wave (SDW) which accompany it's structural changes. The transition temperature is thought to be determined by the amount of energy produced during the transition process and the softness of the original structure. $AMo_4O_6$ (A=K, Sn) are known to be quasi-one dimensional metals which exhibit metalinsulator transitions. The difference of the transition temperatures between $KMo_4O_6$ and $SnMo_4O_6$ (A=K, Sn) is examined by investigating their electronic and structural properties. Fermi surface nesting area and the lattice softness are the governing factors to determine the metal-insulator transition temperature in $AMo_4O_6$ compounds.

RESEARCH OF WELDING EFFECT ON STRUCTURAL INTEGRITY AT HIGH TEMPERATURE

  • Tu, Shan-Tung;Yoon, Kee-Bong
    • Proceedings of the KWS Conference
    • /
    • 1998.10a
    • /
    • pp.11-24
    • /
    • 1998
  • The invention of fusion wilding technology has brought on a revolutionary change in manufacturing industry which enables the construction of large scale high temperature plants in chemical, petrochemical and power generation industries. However, among the failure cases of high temperature components, premature failures of weldments have taken a large percentage that indicates the detrimental effect of welding on structural integrity. The accurate prediction of the high temperature behaviour of welded components is thus becoming increasingly important in order to realise an optimised design and maintenance of a plant life. In the present paper, recent research activities on high temperature behaviour of welded structures are briefly summarised. A local deformation measuring technique is proposed to determine the creep properties of weldment constituents. A damage mechanics approach is introduced to study the life reduction and ductility reduction due to the presence of a weld in high temperature structures. Finally, the high temperature creep crack growth in weldments is discussed.

  • PDF

HWCVD를 이용하여 Microcrystalline film 성장시 Silane 농도에 따른 박막 성장 특성

  • Park, Seung-Il;Lee, Jung-Tack;Lee, Jeong-Chul;Huh, Yun-Sung;Kim, Keun-Joo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.267-267
    • /
    • 2010
  • The structural and electrical properties of microcrystalline silicon films were investigated by hot wire chemical vapor deposition(HWCVD) often called catalytic chemical vapor deposition(Cat-CVD). The Si microcrystalline phase is easily controlled by changing the rate of the silane concentration of $SiH_4$ to $H_2$ during deposition. The Structural property was observed by Raman and SEM. Photo-conductivity and dark conductivity, and photo-sensitivity were observed by Sunsimulator (AM 1.5 illumination). The film color was changed by the variation of silane concentration. HWCVD is useful for the formation of Si thin films for solar cell and needs further commercialized development for mass production.

  • PDF