• 제목/요약/키워드: Chemical treatment

검색결과 7,424건 처리시간 0.031초

Kevlar-29 섬유강화 복합재료의 기계적 계면 특성 연구 (Studies on Mechanical Interfacial Properties of Kevlar-29 Fibers Reinforced Composites)

  • Park, Soo-Jin;Seo, Min-Kang;Ma, Tae-Jun;Lee, Jae-Rock
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2001년도 추계학술발표대회 논문집
    • /
    • pp.158-162
    • /
    • 2001
  • The effects of chemical treatment on Kevlar-29 fibers have been studied in a composite system. The surface characteristics of the Kevlar-29 fibers were characterized by pH, acid-base value and X-ray photoelectron spectroscopy (XPS). The mechanical interfacial properties of final composites were studied by interlaminar shear strength (ILSS) and critical stress intensity factor ($K_{IC}$). Also, the impact properties of the composites were investigated in the differentiating studies between initiation and propagation energies, and ductile index (DI) along with maximum farce and total energy. It was found that the chemical treatment with phosphoric acid ($H_3PO_4$) solution significantly affected the degree of adhesion at interfaces between fibers and resin matrix, resulting in improving the mechanical interfacial strength of the composites. This was probably due to the presence of chemical polar groups on Kevlar surfaces, leading to an increment of interfacial binding force in a composite system.

  • PDF

결정질 태양전지를 위한 HF 화학 패시베이션 연구 (A Study on HF Chemical Passivation for Crystalline Silicon Solar Cell Application)

  • 최정호;노시철;유동열;이진화;김영철;서화일
    • 반도체디스플레이기술학회지
    • /
    • 제10권1호
    • /
    • pp.51-55
    • /
    • 2011
  • The surface passivation is one of the important methods that can improve the efficiency of solar cells and can be classified into two methods: wet-chemical passivation and film passivation. In this paper, chemical HF treatment were employed for the passivation of n-type silicon wafers and their effects were studied. To investigate film passivation effects, the silicon nitride films were also deposited by PECVD (plasma-enhanced chemical vapor deposition) on n-type silicon wafers treated with chemical HF. The minority carrier lifetime measurements were used for evaluation of the passivation characteristics in the all experiments steps. We confirmed that the minority carrier lifetime was improved with chemical HF treatment due to passivation effects by H-termination.

Effects of Biomass Application on Soil Carbon Storage and Mitigation of GHGs Emission in Upland

  • Park, Woo-Kyun;Kim, Gun-Yeob;Lee, Sun-Il;Shin, Joung-Du;Jang, Hee-Young;Na, Un-Sung;So, Kyu-Ho
    • 한국토양비료학회지
    • /
    • 제48권5호
    • /
    • pp.340-350
    • /
    • 2015
  • This experiment was carried out to find out the mitigation of greenhouse gases (GHGs) emission and changes of soil carbon contents in the cropland. In order to minimize the soil disturbance, this study was conducted without crop cultivation at the pots treated with different biomass. Different biomass was buried in the soil for 12 months. Decomposition rates of expander rice hull, pig manure compost and carbonized rice hull were 18%, 11~11.5% and 0.5~1.2%, respectively. It was appeared that carbonized rice hull was slightly decomposed. No difference was shown between chemical fertilizer treatment plot and non-application plot. It was appeared that soil carbon content in the non chemical fertilizer application plot was high when compared to its chemical fertilizer. Its content at soil depth of 20 cm more decreased than the upper layer of soil. Accumulative emission of $CO_2$ with different treatments of biomass was highest of 829.0~876.6 g $CO_2m^{-2}$ in the application plot of PMC (Pig Manure Compost) regardless of chemical fertilizer treatment during 16 months of experiment. However, the emission for expander rice hull treatment plot was lowest of 672.3~808.1 g $CO_2m^{-2}$. For application plot of the carbonized rice hull, it was shown that non chemical fertilizer plot, 304.1 mg $N_2Om^{-2}$, was higher than the chemical fertilizer treatment, 271.6 mg $N_2Om^{-2}$. Greenhouse gas emissions in the PMC treatment were highest of 0.94 ton $CO_2eqha^{-1}yr^{-1}$. However, it was estimated to be the lowest in the expander rice hull treatment.

빠르게 안정화된 레이온직물의 특성에 미치는 초음파세척 및 화학전처리 영향 (Effects of Ultrasonic Cleaning and Chemical Pre-treatment on the Characteristics of Fast-stabilized Rayon Fabrics)

  • 조채욱;조동환
    • 접착 및 계면
    • /
    • 제14권3호
    • /
    • pp.146-159
    • /
    • 2013
  • 본 연구에서는 $350^{\circ}C$에서 4 min 이내로 빠르게 등온 안정화공정을 통해 얻어진 레이온직물의 화학조성, 물리적 특성, X-선 회절 패턴, 열안정성 그리고 직물 형상에 미치는 초음파세척 및 화학전처리의 영향을 조사하였다. 안정화공정 동안 레이온직물에서 발생하는 중량감소와 열수축을 줄이고 안정화반응을 촉진시키기 위하여 안정화공정 전에 레이온직물을 먼저 초음파 세척하고 $NH_4Cl$, $Na_3PO_4$, $H_3PO_4$$ZnCl_2$로 화학전처리 공정을 수행하였다. 결과는 초음파세척 및 화학전처리가 안정화된 레이온직물의 중량감소, 열수축, 미세구조 변화, 탄소함량, 열안정성, 및 직물 형상에 영향을 주었으며, 사용한 안정화시간과 화학전처리제의 종류에 의존하였다.

수소제조에 관한 박막형 CdS-TiO2 복합 광촉매계의 표면처리 효과 (Effect of Surface Treatment of CdS-TiO2 Composite Photocatalysts with Film Type on Hydrogen Production)

  • 장점석;소원욱;김광제;문상진
    • 한국수소및신에너지학회논문집
    • /
    • 제13권1호
    • /
    • pp.34-41
    • /
    • 2002
  • CdS and $TiO_2$ nanoparticles were made by the precipitation method and sol-gel method, respectively, and they were mixed mechanically and then treated with the hydrothermal processing. CdS-$TiO_2$ composite particulate films were thus prepared by casting CdS-$TiO_2$ mixed sol onto $SnO_2$ conducting glass and a subsequent heat-treatment at $400^{\circ}C$. Again, the physico-chemical and photoelectrochemical properties of these films were controlled by the surface treatment with $TiCl_4$ aqueous solution. The photocurrents and the hydrogen production rates measured under the present experimental conditions varied in the range of $3.5{\sim}4.5mA/cm^2$ and $0.3{\sim}1.8cc/cm^2$-hr, respectively, and showed the maximum values at the $CdS/[CdS+TiO_2]$ mole ratio of 0.2. Also, the surface treatment with $TiCl_4$ aqueous solution caused a considerable improvement in the photocatalytic activity, Probably as a result of close contacts between the primary particles by the etching effect of $TiCl_4$ It was found that the photoelectrochemical performance of these particulate films could be effectively enhanced by this approach.

물리·화학적 공정을 이용한 해수 동물성 플랑크톤 Aretemia sp.의 소독 (Inactivation of Seawater Zooplankton Aretemia sp. using Physical and Chemical Processes)

  • 정창;김동석;박영식
    • 한국환경과학회지
    • /
    • 제24권9호
    • /
    • pp.1181-1188
    • /
    • 2015
  • In this study, we discussed about the application of the single physical and chemical treatment processes and the physical-chemical complex treatment processes on the inactivation of Artemia sp. in order to satisfy the USCG Phase II (United States Coast Guard). The results showed that initial disinfection rate of ultrasonic process in single batch process is higher than that of electrolysis. However, the inactivation rate showed slower than electrolysis. The inactivation rate of Artemia sp. on the single continuous treatment process ranked in the following order: homogenizer > electrolysis > ultrasonic process. Inactivation rate of Artemia sp. in continuous homogenizer-electrolysis complex process was reached at 100% immediately. A synergistic effect of ultrasonic-electrolytic complex process was found to be a small. The order of processes in a complex process did not affect the disinfection performance.

Experimental study on improving bamboo concrete bond strength

  • Mali, Pankaj R.;Datta, Debarati
    • Advances in concrete construction
    • /
    • 제7권3호
    • /
    • pp.191-201
    • /
    • 2019
  • Bamboo concrete bond behaviour is investigated through pullout test in this work. The bamboo strip to be used as reinforcement inside concrete is first treated with chemical adhesive to make the bamboo surface impermeable. Various surface coatings are explored to understand their water repellant properties. The chemical action at the bamboo concrete interface is studied through different chemical coatings, sand blasting, and steel wire wrapping treatment. Whereas mechanical action at the bamboo concrete interface is studied by developing mechanical interlock. The result of pullout tests revealed a unique combination of surface treatment and grooved bamboo profile. This combination of surface treatment and a grooved bamboo profile together enhances the strength of bond. Performance of a newly developed grooved bamboo strip is verified against equivalent plain rectangular bamboo strip. The test results show that the proposed grooved bamboo reinforcement, when treated, shows highest bond strength compared to treated plain, untreated plain and untreated grooved bamboo reinforcement. Also, it is observed that bond strength is majorly influenced by the type of surface treatment, size and spacing of groove. The changes in bamboo-concrete bond behavior are observed during the experimentation.

화학제 처리가 성장기 넙치 (Paralichthys olivaceus)에 미치는 급성독성 효과 (Effects of Acute Toxicity of Chemical Treatments on the Cultured Oliver Flounder, Paralichthys olivaceus)

  • 류호영;박종득;이주;심정민;김봉석
    • 한국양식학회지
    • /
    • 제11권2호
    • /
    • pp.223-230
    • /
    • 1998
  • This study was carried out for the purpose of developing environmental friendly and effective chemical treatment method for the disease control in the land-based flounder culture which is industrially popular in the coastal area in Korean. The chemicals such as flounder, Paralichthys olivaceus and their effects on the fish based on the 24hr-$LC_{50}$, $LT_{50}$, 24-hour survival rate at each experimental concentration, recovery rate of the survived individual from chemical treatment, and the histological change of the gill after chemical treatment were investigated and analyzed. The 24hr-$LC_{50}$ was 321.65 ppm for formalin, 419.62 ppm for chlorine dioxide, and 395.97 ppm for hydrogen peroxide, respectively. The $LT_{50}$ was 15-hour for formalin, 17-hour for chlorine dioxide and 24-hour for hydrogen peroxide, respectively. Fishes exposed to the experimental concentration of three chemicals were quickly susceptible in the order of formalin, chlorine dioxide and hydrogen peroxide with a trend of shorter half lethal time at higher concentration. Initial survival rate of the flounder soon after chemical treatment was the highest in the hydrogen peroxide treatment compared with the other two chemicals. The histological damage by the hydrogen peroxide treatment was negligible compared with the other two chemicals. Accordingly, hydrogen peroxide treatment showed the lowest toxicity compared with the other two chemicals to the experimental fishes.

  • PDF

활성탄 개질에 따른 표면 특성 변화가 2,4-dichlorophenol 흡착성능에 미치는 영향 (Effects of chemical modification on surface characteristics and 2,4-dichlorophenol adsorption on activated carbon)

  • 안선경;송원중;박용민;양현아;권지향
    • 상하수도학회지
    • /
    • 제34권6호
    • /
    • pp.425-435
    • /
    • 2020
  • Numerous chemical modifications on activated carbon such as acidic conditioning, thermal treatment and metal impregnation have been investigated to enhance adsorption capacities of micropollutants in water treatment plants. In this study, chemical modification including acidic, alkaline treatment, and iron-impregnation was evaluated for adsorption of 2,4-dichlorophenol (2,4-DCP). For Fe-impregnation, three concentrations of ferric chloride solutions, i.e., 0.2 M, 0.4 M, and 0.8 M, were used and ion-exchange (MIX) of iron and subsequent thermal treatment (MTH) were also applied. Surface properties of the modified carbons were analyzed by active surface area, pore volume, three-dimensional images, and chemical characteristics. The acidic and alkaline treatment changed the pore structures but yielded little improvement of adsorption capacities. As Fe concentrations were increased during impregnation, the active adsorption areas were decreased and the compositional ratios of Fe were increased. Adsorption capacities of modified ACs were evaluated using Langmuir isotherm. The MIX modification was not efficient to enhance 2,4-DCP adsorption and the MES treatment showed increases in adsorption capacities of 2,4-DCP, compared to the original activated carbon. These results implied a possibility of chemical impregnation modification for improvement of adsorption of 2,4-DCP, if a proper modification procedure is sought.

Effect of Thermal Treatment on the Performance and Nanostructures in Polymer Solar Cells with PTB7-Th:PC71BM Bulk Heterojunction Layers

  • Lee, Sooyong;Seo, Jooyeok;Jeong, Jaehoon;Lee, Chulyeon;Song, Myeonghun;Kim, Hwajeong;Kim, Youngkyoo
    • Current Photovoltaic Research
    • /
    • 제5권3호
    • /
    • pp.69-74
    • /
    • 2017
  • Here we report the influence of thermal treatment on the performance of high efficiency polymer solar cells with the bulk heterojunction films of poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b'] dithiophene-alt-3-fluorothieno[3,4-b]thiophene-2-carboxylate] (PTB7-Th) and [6,6]-phenyl $C_{71}$ butyric acid methyl ester ($PC_{71}BM$). The crystalline nanostructure of PTB7-Th:$PC_{71}BM$ layers, which were annealed at three different temperatures, was investigated by employing synchrotron radiation grazing incidence X-ray diffraction (GIXD) technique. Results showed that the device performance was slightly reduced by thermal annealing at $50^{\circ}C$ but became significantly poor by thermal annealing at $100^{\circ}C$. The poor device performance by thermal annealing was attributed to the collapse in the crystalline nanostructure of PTB7-Th in the PTB7-Th:$PC_{71}BM$ layers as evidenced by the GIXD measurements that exhibited huge reduction in the intensity of PTB7-Th (100) peak even at $50^{\circ}C$.