• Title/Summary/Keyword: Chemical stability difference

Search Result 134, Processing Time 0.026 seconds

Thermal Durability of Neon Transformer with Diluent Mixing Ratio (증량제 혼합비율에 따른 네온변압기의 열내구성 평가)

  • Hong, In Kwon;Jeon, Gil Song;Lee, Seung Bum
    • Applied Chemistry for Engineering
    • /
    • v.26 no.4
    • /
    • pp.452-457
    • /
    • 2015
  • The physical properties, such as the heat resistance and thermal durability of the temperature difference fatigue resistance should be excellent when preparing an epoxy type resin for a neon transformer housing. In this study, 50 wt% of $SiO_2$ and silica were selected as a reinforcement and diluent filler for epoxy type resins, respectively. Thermal conductivity and thermal stability were measured as the mixing ratio varied upon the particle sizes. The optimal amount of the mixed silica was 50 wt%. Thermal stability was improved with increasing the amount of larger silica particles. The optimal mixing ratio of differently sized silica particles was 28/3 : 14/18 : 8/10 mesh = 1 : 1 : 1. From these results, it is thought that neon transformer is producible which has excellent thermal durability.

Properties and Application of Azo based Dyes for Detecting Hazardous Acids (유해 산 검출용 아조계 색소의 특성 및 응용 연구)

  • Shin, Seung-Rim;Jun, Kun;An, Kyoung-Lyong;Kim, Sang Woong;Kim, Tae-Hwan;Seo, Dong Sung;Lee, Chang Ick
    • Textile Coloration and Finishing
    • /
    • v.33 no.2
    • /
    • pp.49-63
    • /
    • 2021
  • In this study, a convenient approach for sensitive, quick and simple detection of hazardous acids was investigated. A series of azo dyes were synthesized and applied as a chemosensor for the acid detection both on fibers and in solution. Various aniline, benzothiazole or isoxazole derivatives were used as diazo component and coupled with N-benzyl-N-ethylaniline or 2,2'-(phenylimino)bis-ethanol to give azo based dyes. The acid sensing phenomenon was observed by naked-eye and detection was further confirmed by UV-Vis spectrophotometer and hue difference(ΔH*) evaluation. The developed sensors showed a distinct and quick color change from yellow to magenta by addition of trace amounts of the hazardous acids. The absorption maxima was shifted to a longer wavelength by 70 ~ 150nm and hue difference(ΔH*) was 60 ~ 120°. A cotton fiber coated with Dye 1 exhibited excellent storage stability under various temperature(-30 ~ 43℃) and humidity(30 ~ 80%) conditions without discoloration and fading of the fiber sensors. Also the acid sensing properties were maintained.

Comparison of operational efficiency between sand-filtration process and membrane filtration process (모래여과 공정과 막여과 공정의 운영효율 비교)

  • Byeon, Kwangjin;Jang, Eunsu
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.6
    • /
    • pp.529-537
    • /
    • 2017
  • Membrane filtration process is an advanced water treatment technology that has excellently removes turbidity and microorganisms. However, it is known that it has problems such as low economic efficiency and the operating stability. Therefore, this study was to evaluate on the economical feasibility and operational stability comparison of membrane and sand filtration process in Im-sil drinking water treatment plant. For the economic analysis of each process, the electricity cost and chemical consumption were compared. In the case of electric power consumption, electricity cost is $68.67KRW/m^3$ for sand filtration and $79.98KRW/m^3$ for membrane filtration, respectively. Therefore, membrane filtration process was about 16% higher than sand filtration process of electricity cost. While, the coagulant usage in the membrane filtration process was 43% lower than the sand filtration process. Thus, comparing the operation costs of the two processes, there is no significant difference in the operating cost of the membrane filtration process and the sand filtration process as $85.94KRW/m^3$ and $79.71KRW/m^3$ respectively (the sum of electricity and chemical cost). As a result of operating the membrane filtration process for 3 years including the winter season and the high turbidity period, the filtrated water turbidity was stable to less than 0.025 NTU irrespective of changes in the turbidity of raw water. And the CIP(Clean In Place) cycle turned out to be more than 1 year. Based on the results of this study, the membrane filtration process showed high performance of water quality, and it was also determined to have the economics and operation stability.

Stability of Oxidizer $H_2O_2$ for Copper CMP Slurry (구리 CMP 슬러리를 위한 산화제 $H_2O_2$의 안정성)

  • Lee, Do-Won;Kim, In-Pyo;Kim, Nam-Hoon;Kim, Sang-Yong;Seo, Yong-Jin;Chang, Eui-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.382-385
    • /
    • 2003
  • Chemical mechanical polishing(CMP) is an essential process in the production of copper-based chips. On this work, the stability of Hydrogen Peroxide($H_2O_2$) as oxidizer of Cu CMP slurry has been investigated. $H_2O_2$ is known as the most common oxidizer in Cu CMP slurry. Copper slowly dissolves in $H_2O_2$ solutions and the interaction of $H_2O_2$ with copper surface had been studied in the literature. Because hydrogen peroxide is a weak acid in aqueous solutions, a passivation-type slurry chemistry could be achieved only with pH buffered solution.[1] Moreover, $H_2O_2$ is so unstable that its stabilization is needed using as oxidizer. As adding KOH as pH buffering agent, stability of $H_2O_2$ decreased. However, stability went up with putting in small amount of BTA as film forming agent. There was no difference of $H_2O_2$ stability between KOH and TMAH at same pH. On the other hand, $H_2O_2$ dispersion of TMAH is lower than that of KOH. Furthermore, adding $H_2O_2$ in slurry in advance of bead milling lead to better stability than adding after bead milling. Generally, various solutions of phosphoric acids result in a higher stability. Using Alumina C as abrasive was good at stabilizing for $H_2O_2$; moreover, better stability was gotten by adding $H_3PO_4$.

  • PDF

Analysis of the Structure and Stability of Erythropoietin by pH and Temperature Changes using Various LC/MS

  • Chang, Seong-Hun;Kim, Hyun-Jung;Kim, Chan-Wha
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.9
    • /
    • pp.2663-2670
    • /
    • 2013
  • The purpose of stability testing is to provide evidence about how the quality of a drug varies with time under the influence of a variety of environmental factors. In this study, erythropoietin (EPO) was analyzed under different pH (pH 3 and pH 9) and temperature ($25^{\circ}C$ and $40^{\circ}C$) conditions according to current Good Manufacturing Practice (cGMP) and International Conference on Harmonisation (ICH) guidelines. The molecular weight difference between intact EPO and deglycosylated EPO was determined by SDS-PAGE, and aggregated forms of EPO under thermal stress and high-pH conditions were investigated by size exclusion chromatography. High pH and high temperature induced increases in dimer and high molecular weight aggregate forms of EPO. UPLC-ESI-TOF-MS was applied to analyze the changed modification sites on EPO. Further, normal-phase high-performance liquid chromatography was performed to identify proposed glycan structures and high pH anion exchange chromatography was carried out to investigate any change in carbohydrate composition. The results demonstrated that there were no changes in modification sites or the glycan structure under severe conditions; however, the number of dimers and aggregates increased at $40^{\circ}C$ and pH 9, respectively.

Oxidative Stability of Fatty Acids and Tocopherols in the Fats and Oils during Microwave Heating (Microwave 오븐 가열에 의한 유지의 지방산과 토코페롤의 안정성)

  • 주광지;김은미
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.24 no.2
    • /
    • pp.234-241
    • /
    • 1995
  • Effect of microwave heating on the oxidative stability of the soybean oil, sesame oil, butter and margarine were investigated by mearsuring fatty acids amout and tocopherol losses. The index for chemical properteis, free fatty acid, peroxide value, anisidine value, carbonyl value, conjugated diene and triene levels were also mearsured in the oil samples for 5, 10, 15 and 20 min of heating in a microwave oven. No significant difference was observed on the fatty acids composition in the fats and oils before and after microwave heating. During microwave treatment, the oxidative degradation of the tocopherols in the samples became greater with increasing heating time. The amount of tocopherols in the soild fats, butter and margarine, dropped drastically after 5 min of heating and reduced to 95% of their original levels after 20min heating ${\gamma}$-tocopherol in butter showed the most unstable states and completely destroyed during microwave treatment for 20min. On the other hand, 80% of tocopherols in the liquid oils were still remained after 5min of heating except $\delta$-tocopherol in sesame oil.

  • PDF

PEGYLATION: Novel Technology to Enhance Therapeutic Efficacy of Proteins and Peptides (PEG 접합: 단백질 및 펩타이드 치료제의 약효를 증가시키는 새로운 기술)

  • Park, Myung-Ok;Lee, Kang-Choon
    • Journal of Pharmaceutical Investigation
    • /
    • v.30 no.2
    • /
    • pp.73-83
    • /
    • 2000
  • Polyethylene glycol (PEG) is a water soluble, biocompatible, non-toxic polymer and PEGylation is a well established technique for the modification of therapeutic proteins and peptides. PEG-protein drugs have been extensively studies in relation to therapies for various diseases: cancer, inflammation and others. The covalent attachment of PEG to proteins and peptides prolonged plasma half-life, reduced antigenicity and immunogenicity, increased thermal and mechanical stability, and prevented degradation by enzymes. Several chemical groups for general and site specific conjugation have been exploited to activate PEG for amino group, carboxyl group, and cysteine groups. PEGylation of many proteins and peptides have been studied to enhance their properties for the potential uses. Also, the different positional isomers in several PEG-proteins have shown the difference in vivo stability and biological indicating that the site of PEG molecule attachment is one of the important factor to develop PEG-proteins as potential therapeutic agents.

  • PDF

A STUDY OF GEL STRUCTURE IN THE NONIONIC SURFACTANT / CETOSTEARYL ALCOHO L/ WATER TERNARY SYSTEMS BY DIFFERENTIAL SCANNING CALORIMETER

  • Yoon, Moung-Seok;Chung, Youn-Bok;Kun Han
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.26 no.1
    • /
    • pp.213-232
    • /
    • 2000
  • Cetostearyl alcohol has been incorporated into cosmetic or pharmaceutial emulsions to give them an appropriate consistency and a long term stability. It is well known that cetostearyl alcohol forms a gel phase with a nonionic surfactant in an aqueous system, and the properties of the gel phase depend on several factors such as the ratio of fatty alcohols. The aim of the present Paper is to investigate the effect of the structural difference of the lipophilic part of surfactants on the stability of the gel phase in the nonionic surfactant / cetostearyl alcohol / water ternary systems using differential scanning calorimeter. It is concluded that the gel phase formed by the surfactant having the bended alkyl chain is more unstable than that formed by the case of the straight alkyl chain, and we discussed the reason why the former is more unstable after long term storage by means of the measurements of the ${\Delta}$H.

  • PDF

Fundamental evaluation of hydrogen behavior in sodium for sodium-water reaction detection of sodium-cooled fast reactor

  • Tomohiko Yamamoto;Atsushi Kato;Masato Hayakawa;Kazuhito Shimoyama;Kuniaki Ara;Nozomu Hatakeyama;Kanau Yamauchi;Yuhei Eda;Masahiro Yui
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.893-899
    • /
    • 2024
  • In a secondary cooling system of a sodium-cooled fast reactor (SFR), rapid detection of hydrogen due to sodium-water reaction (SWR) caused by water leakage from a heat exchanger tube of a steam generator (SG) is important in terms of safety and property protection of the SFR. For hydrogen detection, the hydrogen detectors using atomic transmission phenomenon of hydrogen within Ni-membrane were used in Japanese proto-type SFR "Monju". However, during the plant operation, detection signals of water leakage were observed even in the situation without SWR concerning temperature up and down in the cooling system. For this reason, the study of a new hydrogen detector has been carried out to improve stability, accuracy and reliability. In this research, the authors focus on the difference in composition of hydrogen and the difference between the background hydrogen under normal plant operation and the one generated by SWR and theoretically estimate the hydrogen behavior in liquid sodium by using ultra-accelerated quantum chemical molecular dynamics (UA-QCMD). Based on the estimation, dissolved H or NaH, rather than molecular hydrogen (H2), is the predominant form of the background hydrogen in liquid sodium in terms of energetical stability. On the other hand, it was found that hydrogen molecules produced by the sodium-water reaction can exist stably as a form of a fine bubble concerning some confinement mechanism such as a NaH layer on their surface. At the same time, we observed experimentally that the fine H2 bubbles exist stably in the liquid sodium, longer than previously expected. This paper describes the comparison between the theoretical estimation and experimental results based on hydrogen form in sodium in the development of the new hydrogen detector in Japan.

Simulation on the Distribution of Vanadium- and Iron-Picolinate Complexes in the Decontamination Waste Solution (제염 폐액에서 바나듐- 및 철-피콜리네이트 착화물의 평형분배 모사)

  • Shim, Joon-Bo;Oh, Won-Zin;Kim, Jong-Duk
    • Korean Chemical Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.33-38
    • /
    • 2005
  • The distribution of vanadium and iron ionic species in the presence of picolinate ligand has been simulated at various conditions with different pH values and compositions in the decontamination waste solution. In spite of variations of metal concentration in the decontamination solution, the shape of distribution diagrams were not changed greatly at both high (the molar ratio of picolinate to vanadium is 6) and low (the molar ratio is 3) LOMI decontamination conditions. However, in the solution of low-picolinate condition the shape of the distribution diagram of iron(II)-picolinate complexes was changed significantly. This phenomenon is attributed to the shortage of relative amount of picolinate ligand to iron existed in the solution, and originated from the difference in stability constants for complexes formed between vanadium(III) and iron(II) species with picolinate ligand. The distribution diagrams obtained in this study can be applied very usefully to the prediction or understanding the reaction phenomena occurred at various conditions in the course of the LOMI waste treatments such as an ion exchange operation.