• Title/Summary/Keyword: Chemical speciation profile

Search Result 3, Processing Time 0.019 seconds

Assessment of Changed Input Modules with SMOKE Model (SMOKE 모델의 입력 모듈 변경에 따른 영향 분석)

  • Kim, Ji-Young;Kim, Jeong-Soo;Hong, Ji-Hyung;Jung, Dong-Il;Ban, Soo-Jin;Lee, Yong-Mi
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.3
    • /
    • pp.284-299
    • /
    • 2008
  • Emission input modules was developed to produce emission input data and change some profiles for Sparse Matrix Operator Kernel Emissions (SMOKE) using Clean Air Policy Support System (CAPSS)'s activities and previous studies. Specially, this study was focused to improve chemical speciation and temporal allocation profiles of SMOKE. At first, SCC cord mapping was done. 579 SCC cords of CAPSS were matched with EPA's one. Temporal allocation profiles were changed using CAPSS monthly activities. And Chemical speciation profiles were substituted using Kang et al. (2000) and Lee et al. (2005) studies and Kim et al. (2005) study. Simulation in Seoul Metropolitan Area (Seoul, Incheon, Gyeonggi) using MM5, SMOKE and CMAQ modeling system was done for effect analysis of changed input modules of SMOKE. Emission model results adjusted with new input modules were slightly changed as compared to using EPA's default modules. SMOKE outputs shows that aldehyde emissions were decreased 4.78% after changing chemical profiles, increased 0.85% after implementing new temporal profiles. Toluene emissions were decreased 18.56% by changing chemical speciation profiles, increased 0.67% by replacing temporal profiles as well. Simulated results of air quality were also slightly elevated by using new input modules. Continuous accumulation of domestic data and studies to develop input system for air quality modeling would produce more improved results of air quality prediction.

Estimation of Chemical Speciation and Temporal Allocation Factor of VOC and PM2.5 for the Weather-Air Quality Modeling in the Seoul Metropolitan Area (수도권 지역에서 기상-대기질 모델링을 위한 VOC와 PM2.5의 화학종 분류 및 시간분배계수 산정)

  • Moon, Yun Seob
    • Journal of the Korean earth science society
    • /
    • v.36 no.1
    • /
    • pp.36-50
    • /
    • 2015
  • The purpose of this study is to assign emission source profiles of volatile organic compounds (VOCs) and particulate matters (PMs) for chemical speciation, and to correct the temporal allocation factor and the chemical speciation of source profiles according to the source classification code within the sparse matrix operator kernel emission system (SMOKE) in the Seoul metropolitan area. The chemical speciation from the source profiles of VOCs such as gasoline, diesel vapor, coating, dry cleaning and LPG include 12 and 34 species for the carbon bond IV (CBIV) chemical mechanism and the statewide air pollution research center 99 (SAPRC99) chemical mechanism, respectively. Also, the chemical speciation of PM2.5 such as soil, road dust, gasoline and diesel vehicles, industrial source, municipal incinerator, coal fired, power plant, biomass burning and marine was allocated to 5 species of fine PM, organic carbon, elementary carbon, $NO_3{^-}$, and $SO_4{^2-}$. In addition, temporal profiles for point and line sources were obtained by using the stack telemetry system (TMS) and hourly traffic flows in the Seoul metropolitan area for 2007. In particular, the temporal allocation factor for the ozone modeling at point sources was estimated based on $NO_X$ emission inventories of the stack TMS data.

Difference in Electrophoretic Phenotypes of rice Cultivars Selected to Bensulfuron (Bensulfuron에 대(對)한 내성(耐性) 및 감수성(感受性) 수도품종(水稻品種)의 전기영동(電氣泳動) 표현형(表現型) 차이(差異))

  • Kuk, Y.I.;Guh, J.O.;Kim, Y.J.;Lee, D.J.
    • Korean Journal of Weed Science
    • /
    • v.8 no.3
    • /
    • pp.250-257
    • /
    • 1988
  • The study was intended to know any relations between the rice tolerance to bensulfuron and varietal speciation in seed protein composition or any enzymatical allelies with or without chemical treatment. Rice varieties used were UCP-28, Chinsurah Boro II, Fukunohama, Fadehpur-2, IR 14252-13-2-2-5 as the tolerant group, and HP 93(3) FA, HP94(9) FA, Padilabou Alumbis, KH-17854, and IR 1846-2841-1 as the susceptible, respectively. Electrophoretic methods used were SDS-PAGE for seed protein, 7% PAGE for isozymes (acid phosphatase, peroxidase, malate dehydrogenase, and esterase from rice seedling) and variation in isoenzyme profiles (malate dehydrogenase, peroxidase, and esterase) as affected by different concentrations of bensulfuron(0, $10^{-6}$, $10^{-5}$ and $3{\times}10^{-5}M$) was also studied. The results are summarized as follows. -Among 16 bands separated in seed proteins, two different rice groups selected in terms of tolerance to bensulfuron were clustered in dissimilarity, which was based on relatively larger area in whole peaks and higher activities in N, O, P bands for the tolerant group. -Among isozymes obtained from rice seedlings without chemical treatments, the following specificities were obtained. The tolerant varieties had the relatively higher activity in D band out of 4 peroxidase bands. Malate dehydrogenase was separated into 3 bands and only tolerant varieties had A band and higher activities in Band C bands. Esterase was separated into 3-4 bands with higher activities in A and B bands for tolerant varieties. There were one major band accompanied by 2-3 minor bands for acid phosphatase in which only tolerant varieties had the B band. -The effect of Bensulfuron concentration on the isozyme activities showed that the activity of C band in peroxidase was not present in tolerant varieties which was contrary to the increased activities in susceptible varieties. However, D band was gradually disappeared only in susceptible varieties as the concentration of bensulfuron was increased. For malate dehydrogenase in the susceptible varieties, major bands D, E and F kept consistantly higher activities while minor bands A, B and C disappeared sensitively. Among 5 bands of esterase separated, D band was present only in the tolerant varieties while E band only in the susceptible. The activities in A, C, E bands were sharply decreased in the susceptible varieties as the concentration of bensulfuron was increased.

  • PDF