• Title/Summary/Keyword: Chemical shifts

Search Result 303, Processing Time 0.031 seconds

Backbone hydrogen bonding interaction of the inactive isoform of type III antifreeze proteins studied by 1H/15N-HSQC spectra

  • Seo-Ree, Choi;Sung Kuk, Kim;Jaewon, Choi;Joon-Hwa, Lee
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.26 no.4
    • /
    • pp.46-50
    • /
    • 2022
  • Antifreeze proteins (AFPs) bind to the ice crystals and then are able to inhibit the freezing of body fluid at subzero temperatures. Type III AFPs are categorized into three subgroups, QAE1, QAE2, and SP isoforms, based on differences in their isoelectric points. We prepared the QAE2 (AFP11) and SP (AFP6) isoforms of the notched-fin eelpout AFP and their mutant constructs and determined their temperature gradients of amide proton chemical shifts (𝚫δ/𝚫T) using NMR. The nfeAFP11 (QAE2) has the distinct 𝚫δ/𝚫T pattern of the first 310 helix compared to the QAE1 isoforms. The nfeAFP6 (SP) has the deviated 𝚫δ/𝚫T values of many residues, indicating its backbone conformational distortion. The study suggests the distortion in the H-bonding interactions and backbone conformation that is important for TH activities.

Food Security through Smart Agriculture and the Internet of Things

  • Alotaibi, Sara Jeza
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.11
    • /
    • pp.33-42
    • /
    • 2022
  • One of the most pressing socioeconomic problems confronting humanity on a worldwide scale is food security, particularly in light of the expanding population and declining land productivity. These causes have increased the number of people in the world who are at risk of starving and have caused the natural ecosystems to degrade at previously unheard-of speeds. Happily, the Internet of Things (IoT) development provides a glimmer of light for those worried about food security through smart agriculture-a development that is particularly relevant to automating food production operations in order to reduce labor expenses. When compared to conventional farming techniques, smart agriculture has the benefit of maximizing resource use through precise chemical input application and regulation of environmental factors like temperature and humidity. Farmers may make data-driven choices about the possibility of insect invasion, natural disasters, anticipated yields, and even prospective market shifts with the use of smart farming tools. The technical foundation of smart agriculture serves as a potential response to worries about food security. It is made up of wireless sensor networks and integrated cloud computing modules inside IoT.

Applications and Concerns of Generative AI: ChatGPT in the Field of Occupational Health (산업보건분야에서의 생성형 AI: ChatGPT 활용과 우려)

  • Ju Hong Park;Seunghon Ham
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.33 no.4
    • /
    • pp.412-418
    • /
    • 2023
  • As advances in artificial intelligence (AI) increasingly approach areas once relegated to the realm of science fiction, there is growing public interest in using these technologies for practical everyday tasks in both the home and the workplace. This paper explores the applications of and implications for of using ChatGPT, a conversational AI model based on GPT-3.5 and GPT-4.0, in the field of occupational health and safety. After gaining over one million users within five days of its launch, ChatGPT has shown promise in addressing issues ranging from emergency response to chemical exposure to recommending personal protective equipment. However, despite its potential usefulness, the integration of AI into scientific work and professional settings raises several concerns. These concerns include the ethical dimensions of recognizing AI as a co-author in academic publications, the limitations and biases inherent in the data used to train these models, legal responsibilities in professional contexts, and potential shifts in employment following technological advances. This paper aims to provide a comprehensive overview of these issues and to contribute to the ongoing dialogue on the responsible use of AI in occupational health and safety.

Seasonal Change of Sediment Microbial Communities and Methane Emission in Young and Old Mangrove Forests in Xuan Thuy National Park

  • Cuong Tu Ho;Unno Tatsuya;Son Giang Nguyen;Thi-Hanh Nguyen;Son Truong Dinh;Son Tho Le;Thi-Minh-Hanh Pham
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.3
    • /
    • pp.580-588
    • /
    • 2024
  • Microbial communities in mangrove forests have recently been intensively investigated to explain the ecosystem function of mangroves. In this study, the soil microbial communities under young (<11 years-old) and old (>17 years-old) mangroves have been studied during dry and wet seasons. In addition, biogeochemical properties of sediments and methane emission from the two different mangrove ages were measured. The results showed that young and old mangrove soil microbial communities were significantly different on both seasons. Seasons seem to affect microbial communities more than the mangrove age does. Proteobacteria and Chloroflexi were two top abundant phyla showing >15%. Physio-chemical properties of sediment samples showed no significant difference between mangrove ages, seasons, nor depth levels, except for TOC showing significant difference between the two seasons. The methane emission rates from the mangroves varied depending on seasons and ages of the mangrove. However, this did not show significant correlation with the microbial community shifts, suggesting that abundance of methanogens was not the driving factor for mangrove soil microbial communities.

Relative Absorption Edges of GaN/InGaN/GaN Single Quantum Wells and InGaN/GaN Heterostructures by Metalorganic Chemical Vapor Deposition (유기금속화학기상증착법으로 성장된 GaN/InGaN/GaN 단양자 우물층과 InGaN/GaN 이종접합 구조의 광학적 특징)

  • Kim, Je-Won;Son, Chang-Sik;Jang, Yeong-Geun;Choe, In-Hun;Park, Yeong-Gyun;Kim, Yong-Tae;Ambacher, O.;Ctutzmann, M.
    • Korean Journal of Materials Research
    • /
    • v.9 no.1
    • /
    • pp.42-45
    • /
    • 1999
  • The room temperature optical transmission spectra of GaN /InGaN/GaN single quantum wells (SQW) and InGaN/GaN heterostructures grwon by low pressure metalorganic chemical vapor deposition have been measured. The dependence of the absorption edges of the GaN/InGaN/GaN SQW on the well width has been determined from the transmission spectra. The result shows that the absorption edge of GaN/InGaN/GaN SQW shifts towards lower energy as increasing the well width. The dependence of the absorption edges of the InGaN/GaN heterostructures on InN mole fraction has also been determined from the transmission spectra. The result is compared with calculated values obtained from Vegards's laws. Our result shows a good agreement with the calculated values.

  • PDF

Types and Yields of Carbon Nanotubes Synthesized Depending on Catalyst Pretreatment

  • Go, Jae-Seong;Lee, Nae-Seong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.17.2-17.2
    • /
    • 2011
  • Double-walled carbon nanotubes (DWCNTs) were grown with vertical alignment on a Si wafer by using catalytic thermal chemical vapor deposition. This study investigated the effect of pre-annealing time of catalyst on the types of CNTs grown on the substrate. The catalyst layer is usually evolved into discretely distributed nanoparticles during the annealing and initial growth of CNTs. The 0.5-nm-thick Fe served as a catalyst, underneath which Al was coated as a catalyst support as well as a diffusion barrier on the Si substrate. Both the catalyst and support layers were coated by using thermal evaporation. CNTs were synthesized for 10 min by flowing 60 sccm of Ar and 60 sccm of H2 as a carrier gas and 20 sccm of C2H2 as a feedstock at 95 torr and $750^{\circ}C$. In this study, the catalyst and support layers were subject to annealing for 0~420 sec. As-grown CNTs were characterized by using field emission scanning electron microscopy, high resolution transmission electron microscopy, Raman spectroscopy, and atomic force microscopy. The annealing for 90~300 sec caused the growth of DWCNTs as high as ~670 ${\mu}m$ for 10 min while below 90 sec and over 420 sec 300~830 ${\mu}m$-thick triple and multiwalled CNTs occurred, respectively. Several radial breathing mode (RBM) peaks in the Raman spectra were observed at the Raman shifts of 112~191 cm-1, implying the presence of DWCNTs, TWCNTs, MWCNTs with the tube diameters 3.4, 4.0, 6.5 nm, respectively. The maximum ratio of DWCNTs was observed to be ~85% at the annealing time of 180 sec. The Raman spectra of the as-grown DWCNTs showed low G/D peak intensity ratios, indicating their low defect concentrations. As increasing the annealing time, the catalyst layer seemed to be granulated, and then grown to particles with larger sizes but fewer numbers by Ostwald ripening.

  • PDF

Sizes of Union Membership at Sector- and Industry-Levels and Their Shifts in Korea: A Micro Socioeconomic Analysis (국내의 부문 및 산업별 조합원의 규모와 그 변화 : 미시적인 사회·경제적 관점의 분석)

  • Jeong, Jooyeon
    • Journal of Labour Economics
    • /
    • v.29 no.2
    • /
    • pp.117-143
    • /
    • 2006
  • This paper illuminates the patterns of growth and declines in sizes of union membership in metal, chemical, financial, and auto transport sectors in three distinct periods during the last four decades from 1963 to 2003. This paper also calculates union densities in auto assembly, auto supply, and shipbuilding industries of the metal sector, cement, petroleum refining, and pharmaceutical industries of the chemical sector, private banking industry of the financial sector, and city bus industry of the auto transport sector. Such diversities in both sizes of union membership and union densities among sectors and industries turned out to be associated with attitudes and choices of employers and unions in interaction with sector- and industry-specific economic (growth stage and path), institutional (degrees of government intervention), and social (demographic features of employees and prevailing sizes of firms) environment. Such finding shows that theoretical reasonings on sizes of union membership and union densities across sectors and industries in advanced nations are also relevantly useful to analyze the Korean case.

  • PDF

Flavonoidal constituent in Korean Lactuca dentata Makino (한국산 씀바귀의 Flavonoid 성분에 관한 연구)

  • Chung, Kang-Hyun;Yoon, Kwang-Ro;Kim, Jun-Pyong
    • Journal of the Korean Society of Food Culture
    • /
    • v.9 no.2
    • /
    • pp.131-136
    • /
    • 1994
  • The ethylacetate extract of Lactuca dentata Makino showed 6 flavonoidal components as detected by ferric chloride solution. The flavonoidal constituent of Lactuca dentata Makino was isolated and purified by the series of column chromatography. The chemical structure of one of the flavonoidal component named as compound E was identified by UV, IR and NMR spectrometry. The melting point range of compound E was $249.5^{\circ}C-251^{\circ}C$. The UV and IR spectra of purified compound E, and its genin were measured with the various shifting agents. The results of UV analysis showed the free state of hydroxy group at 3rd and 4th carbon and binding of sugar at the 7th carbon of compound. The sugar bound to the compound E was identified as glucose by TLC. The IR spectrum showed the presense of hydroxy group, conjugated carbonyl group and aromatic group. The analysis of NMR spectrum was done to the purified compound and its derivatives. The chemical shifts against hydrogen atom, hydroxy group, and the moiety of luteolin were observed in the NMR spectrum along with their position and number as well as type of sugar bound. The isolated and purified compound was identified as $luteolin-7-0-{\beta}-D-glucoside$.

  • PDF

Preparation of Dinuclear, Constrained Geometry Zirconium Complexes with Polymethylene Bridges and an Investigation of Their Polymerization Behavior

  • Noh, Seok-Kyun;Jiang, Wen-Long
    • Macromolecular Research
    • /
    • v.12 no.1
    • /
    • pp.100-106
    • /
    • 2004
  • We have prepared the polymethylene-bridged, dinuciear, half-sandwich constrained geometry catalysts (CGC)[Zr(η$\^$5/:η$^1$-C$\_$9/H$\_$5/SiMe$_2$NCMe$_3$)]$_2$[(CH$_2$)$\_$n/][n=6(9), n=12(10)]by treating 2 equivalents of ZrCl$_4$with the corresponding tetralithium salts of the ligands in toluene. $^1$H and $\^$13/C NMR spectra of the synthesized complexes provide firm evidence for the anticipated dinuciear structure. In $^1$H NMR spectra, two singlets representing the methyl group protons bonded at the Si atom of the CGC are present at 0.88 and 0.64 ppm, which are considerably downfield positions relative to the shifts of 0.02 and 0.05 ppm of the corresponding ligands. To investigate the catalytic behavior of the prepared dinuciear catalysts, we conducted copolymerizations of ethylene and styrene in the presence of MMAO. The prime observation is that the two dinuclear CGCs 9 and 10 are not efficient for copo-lymerization, which definitely distinguishes them from the corresponding titanium-based dinuclear CGC. These species are active catalysts, however, for ethylene homopolymerization; the activity of catalyst 10, which contains a 12-methylene bridge, is larger than that of 9 (6-methylene bridge), which indicates that the presence of the longer bridge between the two active sites contributes more effectively to facilitate the polymerization activity of the dinuciear CGC. The activities increase as the polymerization temperature increases from 40 to 70$^{\circ}C$. On the other hand, the molecular weights of the polyethylenes are reduced when the polymerization temperature is increased. We observe that dinuciear metallocenes having different-length bridges give different polymerization results, which reconfirms the significant role that the nature of the bridging ligand has in controlling the polymerization properties of dinuclear catalysts.

Carbon-13 Nuclear Magnetic Resonance Spectroscopic Studies of $^{13}CO$ Adsorbed on Platinum Particles in L-Zeolites

  • 한옥희;Gustavo Larsen;Gary L. Haller;Kurt W. Zilm
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.9
    • /
    • pp.934-942
    • /
    • 1998
  • $^13CO$ chemisorbed on platinum particles in L-zeolite has been investigated by static and magic angle spinning NMR spectroscopy. The representative spectra are composed of a broad asymmetric peak with a center of gravity at 230±30 ppm and a sharp symmetric peak at 124±2 ppm which is tentatively assigned to physisorbed $CO_2$, on inner walls of L-zeolite. Overall, the broad resonance component is similar to our previous results of highly dispersed (80-96%) CO/Pt/silica or CO/Pt/alumina samples, still showing metallic characters. The principal difference is in the first moment value. The broad peak in the spectra is assigned to CO linearly bound to Pt particles in the L-zeolites, and indicates a distribution of isotropic shifts from bonding site to bonding site. The NMR results reported here manifest that the Pt particles inside of the L-zeolites channels are not collectively the same with the ones supported on silica or alumina with similar dispersion in terms of Pt particle shape and/or ordering of Pt atoms in a particle. As a result, Pt particles of CO/Pt/L-zeolite were agglomerated accompanying CO desorption upon annealing. There were no definite changes in the NMR spectra due to differences of exchanged cations. Comparison of our observation on CO/Pt/L-zeolite with Sharma et al.'s reveals that even when the first moment, the linewidtb, and the relaxation times of the static spectra and the dispersion measured by chemisorption are similar, the properties of Pt particles can be dramatically different. Therefore, it is essential to take advantage of the strengths of several techniques together in order to interpret data reliably, especially for the highly dispersed samples.