• 제목/요약/키워드: Chemical shifts

Search Result 303, Processing Time 0.027 seconds

MINDO/3 Theoretical Studies on Sigmatropic Hydrogen Rearrangements (Ⅱ): Systems with Central Nitrogen Atom$^*$

  • Cho, Jeoung-Ki;Lee, Ik-Choon;Oh, Hyuck-Keun;Cho, In-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.5 no.5
    • /
    • pp.179-182
    • /
    • 1984
  • MINDO/3 theoretical studies were carried out on sigmatropic hydrogen rearrangements in systems with central nitrogen atom; three systems studied being (1) N-methylformaldimine, (2) nitrous acid, and (3) formaldoxime-nitrosomethane systems. It was found that in system (1), 1,3-H shift is preferred whereas in systems (2) and (3), 1,2-H shifts are favored. The relative order of reactivity for the three systems was found to be (2) < (3) < (1), which is exactly the opposite to that found for the corresponding systems with central carbon atom.

NMR Studies of Lipid-Protein Interaction in Apolipoprotein B / Phosphatidylcholine Recombinants

  • Byong-Seok Choi;Cheal O Joe;Ke Won Kang
    • Bulletin of the Korean Chemical Society
    • /
    • v.11 no.3
    • /
    • pp.238-240
    • /
    • 1990
  • $^{31}P${$^1H$} nuclear Overhauser effects (NOEs) have been obtained for complexes formed between apolipoprotein B (apo B) and dipalmytoylphosphatidylcholine (DPPC) vesicles. NOE measurements have been conducted with broad-band irradiation of the entire $^1H$ spectrum in order to identify the proton source of the NOE. In a unilamellar vesicle formed spontaneously upon mixing aqueous suspensions of long-chain phospholipid with small amount of short-chain lecithin, the maximum NOE occurs at the N-methyl proton resonance position of the choline moiety. With addition of cholesterol to vesicles, the position of the NOE maximum shifts further away from the choline methyl frequency. For the ternary apo B-vesicle-cholesterol complex, the position of the maximum NOE lies halfway between those in vesicles with and without cholesterol.

The Relationship between $^{129}Xe$ NMR Chemical Shifts and Nanostructure of Polymers

  • Yoshimizu, Hiroaki;Suzuki, Tomoyuki;Asano, Tomoko;Tsujita, Yoshiharu
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.339-339
    • /
    • 2006
  • In this study, the microvoids in glassy polymers were investigated by Xe sorption and $^{129}Xe$ NMR measurements. Xe sorption isotherms of glassy polymers have been successfully interpreted by the dual-mode sorption model. $^{129}Xe$ NMR chemical shift of the $^{129}Xe$ in the samples show nonlinear low-field shift with increasing sorption amount of Xe because of a fast exchange of Xe atoms between Henry and Langmuir sites, whereas it has showed linear shift against sorption amount of Xe into the Langmuir site. From this Xe-density dependence of the $^{129}Xe$ NMR chemical shift, it has been able to estimate mean size of the microvoids in glassy polymer. It is confirmed that there is correlation between ${C_H}'$ and volume or number of microvoids. From these findings, it is demonstrated that $^{129}Xe$ NMR spectroscopy is a powerful technique to determine the mean size and number of microvoids in glassy polymers.

  • PDF

Synthesis and Substituent Effects in Substituted Styryl 4-Methoxy-1-Naphthyl Ketones (다양한 치환기가 붙은 Styryl 4-Methoxy-1-Naphthyl Ketone의 합성과 치환기 효과에 관한 연구)

  • Thirunarayanan, G.;Ananthakrishna Nadar, P.
    • Journal of the Korean Chemical Society
    • /
    • v.50 no.3
    • /
    • pp.183-189
    • /
    • 2006
  • A series of substituted styryl 4-methoxy-1-naphthyl ketones [(2E)-1-(4-methoxy-1-naphthyl)-3-phenyl-2-propen-1-ones] were synthesized using facile method of microwave assisted condensation reaction. The yield of chalcones is more than 90%. They are characterized by their physical constants, micro analysis, infrared (KBr, 4000-400 cm?1) and NMR both 1H and 13C spectral data. From infrared spectra, the s-cis and s-trans stretching vibrations of carbonyl group, from NMR spectra the ethylenic proton and carbon chemical shifts (ppm) are assigned. These spectral data are correlated with various Hammett substituent constants. From the results of statistical analysis the effect of substituents on CO, ? and ? proton and carbons are explained.

Micelle Studies of Dodecyltrimethylammonium Bromide in Water as Probed by Benzene: Effect on Shapes and Sizes of Micelles

  • Yoon Seob Lee;Kyu Whan Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.5
    • /
    • pp.599-602
    • /
    • 1993
  • Micellization process of dodecyltrimethylammonium bromide (DTAB) was studied by using the aromatic probe (benzene) which dissolved in aqueous DTAB solutions. Proton NMR chemical shift measurements of DTAB and DTAB-benzene system showed that benzene molecules solubilized near the micelle-water interface and that the solubilization sites within the micelles are different as the DTAB concentration is passing through 32.0 mM (hereafter we refer this concentration as the second CMC). The change of solubilization sites is also confirmed by abrupt changes of the chemical shifts and relaxation rates of benzene protons in DATB-benzene system at this concentration. It was revealed from the electrical conductivity and viscosity measurements that the solubilization of benzene caused the DTAB micelles to swell out and that the micelles prepared after the second CMC had a greater swelling effect than those prepared before the second CMC. The transition point which reflects the saturation of benzene molecules on the solubilization sites of micelles was observed at one benzene/micellized DTAB mole ratio from the electrical conductivity measurements. Along the different concentration of DTAB solution, this transition point is appeared clearly after the second CMC. From these results it is suggested that the shapes and/or sizes of DTAB micelles of the spherical micelle region prepared after the second CMC are different from those prepared before the second CMC.

Acetylcholinesterase(AChE)-Catalyzed Hydrolysis of Long-Chain Thiocholine Esters: Shift to a New Chemical Mechanism

  • Jung, Dai-Il;Shin, Young-Ju;Lee, Eun-Seok;Moon, Tae-sung;Yoon, Chang-No;Lee, Bong-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.1
    • /
    • pp.65-69
    • /
    • 2003
  • The kinetic and chemical mechanisms of AChE-catalyzed hydrolysis of short-chain thiocholine esters are relatively well documented. Up to propanoylthiocholine (PrTCh) the chemical mechanism is general acid-base catalysis by the active site catalytic triad. The chemical mechanism for the enzyme-catalyzed butyrylthiocholine(BuTCh) hydrolysis shifts to a parallel mechanism in which general base catalysis by E199 of direct water attack to the carbonyl carbon of the substrate. [Selwood, T., et al. J. Am. Chem. Soc. 1993, 115, 10477- 10482] The long chain thiocholine esters such as hexanoylthiocholine (HexTCh), heptanoylthiocholine (HepTCh), and octanoylthiocholine (OcTCh) are hydrolyzed by electric eel acetylcholinesterase (AChE). The kinetic parameters are determined to show that these compounds have a lower Michaelis constant than BuTCh and the pH-rate profile showed that the mechanism is similar to that of BuTCh hydrolysis. The solvent isotope effect and proton inventory of AChE-catalyzed hydrolysis of HexTCh showed that one proton transfer is involved in the transition state of the acylation stage. The relationship between the dipole moment and the Michaelis constant of the long chain thiocholine esters showed that the dipole moment is the most important factor for the binding of a substrate to the enzyme active site.

Theoretical Study of Acetic Acid-Sulfur Dioxide Complexes (Acetic Acid-Sulfur Dioxide 복합체에 대한 이론 연구)

  • Lee, Sang-Myeong;Sung, Eun-Mo
    • Journal of the Korean Chemical Society
    • /
    • v.59 no.3
    • /
    • pp.209-214
    • /
    • 2015
  • The formation of complexes between SO2 and acetic acid was studied theoretically. The ab initio and DFT calculations were performed with MP2 and B3LYP methods using 6-311++G(d,p), aug-cc-pVDZ and aug-cc-pVTZ basis sets. Six stable complexes were identified, and three stable bidentate complexes, C1, C2 and C3, were formed between SO2 and syn-acetic acid, which is more stable form of acetic acid. Anti-acetic acid also form three complexes, C4, C5 and C6, with SO2. C4 is bidentate and C5, C6 are monodentate complexes, which are less stable. The most stable complex, C1 has S⋯O=C and O⋯H-O interactions, and the S⋯O and O⋯H distances are less than the sum of van der Waals radii. The vibrational frequencies of complexes were calculated and were compared with those of monomers. The frequency shifts after formation of complex were found, and the overall pattern of frequency shifts relative to monomers is similar among the six complexes.

Structural Characterization and Thermal Behavior of a Novel Energetic Material: 1-Amino-1-(2,4-dinitrophenylhydrazinyl)-2,2-dinitroethylene

  • Ren, Xiaolei;Zuo, Xiangang;Xu, Kangzhen;Ren, Yinghui;Huang, Jie;Song, Jirong;Wang, Bozhou;Zhao, Fengqi
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.7
    • /
    • pp.2267-2273
    • /
    • 2011
  • A novel energetic material, 1-amino-1-(2,4-dinitrophenylhydrazinyl)-2,2-dinitroethylene (APHDNE), was synthesized by the reaction of 1,1-diamino-2,2-dinitroethylene (FOX-7) and 2,4-dinitrophenylhydrazine in N-methyl pyrrolidone (NMP) at 110 $^{\circ}C$. The theoretical investigation on APHDNE was curried out by B3LYP/6-311+$G^*$ method. The IR frequencies analysis and NMR chemical shifts were performed and compared with the experimental results. The thermal behavior of APHDNE was studied by DSC and TG/DTG methods, and can be divided into two crystal phase transition processes and three exothermic decomposition processes. The enthalpy, apparent activation energy and pre-exponential factor of the first exothermic decomposition reaction were obtained as -525.3 kJ $mol^{-1}$, 276.85 kJ $mol^{-1}$ and $10^{26.22}s^{-1}$, respectively. The critical temperature of thermal explosion of APHDNE is 237.7 $^{\circ}C$. The specific heat capacity of APHDNE was determined with micro-DSC method and theoretical calculation method, and the molar heat capacity is 363.67 J $mol^{-1}K^{-1}$ at 298.15 K. The adiabatic time-to-explosion of APHDNE was also calculated to be a certain value between 253.2-309.4 s. APHDNE has higher thermal stability than FOX-7.

NMR Data of Flavone Derivatives and Their Anti-oxidative Activities

  • Park, Yeong-Hui;Lee, Yong-Uk;Kim, Ho-Jung;Lee, Young-Shim;Yoon, Young-Ah;Mun, Byeong-Ho;Jeong, Yu-Hun;An, Jung-Hun;Shim, Yhong-Hee;Lim, Yoong-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.10
    • /
    • pp.1537-1541
    • /
    • 2006
  • The $^1H$ and $^{13}C$ chemical shifts of eleven flavone derivatives were completely determined by basic 1D and 2D NMR experiments. Nineteen flavone derivatives including the above eleven derivatives were examined for anti-oxidative effects using the 1,1-diphenyl-2-picryl-hydrazyl assay and Caenorhabditis elegans. In order to understand the relationships between the structures of flavone derivatives and their anti-oxidative activities, a Comparative Molecular Field Analysis was performed.

Ex-situ 7Li MAS NMR Study of Olivine Structured Material for Cathode of Lithium Ion Battery

  • Lee, Youngil;An, JiEun;Park, Seul-A;Song, HyeYeong
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.18 no.2
    • /
    • pp.63-68
    • /
    • 2014
  • $^7Li$ nuclear magnetic resonance (NMR) spectra have been observed for $LiMPO_4$ (M = Fe, Mn) samples, as a promising cathode material of lithium ion battery. Observed $^7Li$ shifts of $LiFe_{1-x}Mn_xPO_4$ (x = 0, 0.6, 0.8, and 1) synthesized with solid-state reaction are compared with calculated $^7Li$ shift ranges based on the supertranferred hyperfine interaction of Li-O-M. Ex situ $^7Li$ NMR study of $LiFe_{0.4}Mn_{0.6}PO_4$ in different cut-off voltage for the first charge process is also performed to understand the relationship between $^7Li$ chemical shift and oxidation state of metals affected by delithiation process. The increment of oxidation state for metals makes to downfield shift of $^7Li$ by influencing the supertranferred hyperfine interaction.