• Title/Summary/Keyword: Chemical sensing

Search Result 512, Processing Time 0.028 seconds

Monitoring of Floating Green Algae Using Ocean Color Satellite Remote Sensing (해색위성 원격탐사를 이용한 부유성 녹조 모니터링)

  • Lee, Kwon-Ho;Lee, So-Hyun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.3
    • /
    • pp.137-147
    • /
    • 2012
  • Recently, floating green algae (FGA) in open oceans and coastal waters have been reported over wide area, yet accurate detection of these using traditional ground based measurement and chemical analysis in the laboratory has been difficult or even impossible due to the lack of spatial resolution, coverage, and revisit frequency. In contrast, spectral reflectance measurement makes it possible to quickly assess the chlorophyll content in green algae. Our objectives are to investigate the spectral reflectance of the FGA observed in the Yellow Sea and to develop a new index to detect FGA from satellite imagery, namely floating green algae index (FGAI), which uses relatively simple reflectance ratio technique. The Moderate Resolution Imaging Spectroradiometer (MODIS) and Geostationary Ocean Color Imager (GOCI) satellite images at 500m spatial resolution were utilized to produce FGAI which is defined as the ratio between reflectance at 860nm and 660nm bands. Both FGAI results yielded reasonable green algae detection at the regional scale distribution. Especially houly GOCI observations can present more detaield information of FGAI than low-orbit satellite.

Synthesis and Property of Carbon Nanotube-Supported Pd and Pt Nanoparticles (탄소나노 튜브위에 성장된 Pd 및 Pt 나노 입자의 제조 및 특성)

  • Kim, Hyung-Kun;Lee, Rhim-Youl
    • Korean Journal of Materials Research
    • /
    • v.19 no.4
    • /
    • pp.192-197
    • /
    • 2009
  • Carbon nanotubes (CNT) were used as a catalyst support where catalytically active Pd and Pt metal particles decorated the outside of the external CNT walls. In this study, Pd and Pt nanoparticles supported on $HNO_3$-treated CNT were prepared by microwave-assisted heating of the polyol process using $PdCl_2$ and $H_2PtCl_6{\codt}6H_2O$ precursors, respectively, and were then characterized by SEM, TEM, and Raman. Raman spectroscopy showed that the acid treated CNT had a higher intensity ratio of $I_D/I_G$ compared to that of non-treated CNT, indicating the formation of defects or functional groups on CNT after chemical oxidation. Microwave irradiation for total two minutes resulted in the formation of Pd and Pt nanoparticles on the acid treated CNT. The sizes of Pd and Pt nanoparticles were found to be less than 10 nm and 3 nm, respectively. Furthermore, the $SnO_2$ films doped with CNT decorated by Pd and Pt nanoparticles were prepared, and then the $NO_2$ gas response of these sensor films was evaluated under $1{\sim}5\;ppm$ $NO_2$ concentration at $200^{\circ}C$. It was found that the sensing property of the $SnO_2$ film sensor on $NO_2$ gas was greatly improved by the addition of CNT-supported Pd and Pt nanoparticles.

Resistive Humidity Sensor Using New N-Methacryloyl-N'-ethyl-N'-propyl Piperazinium Bromide Monomer and Their Properties (새로운 N-Methacryloyl-N'-ethyl-N'-propyl Piperazinium Bromide 단량체를 사용한 습도센서 및 그들의 특성 조사)

  • Lee, In-Ho;Park, Chan-Kyo;Gong, Myoung-Seon
    • Polymer(Korea)
    • /
    • v.33 no.4
    • /
    • pp.326-332
    • /
    • 2009
  • New humidity-sensitive monomer, N-methacryloyl-N'-ethyl-N'-propyl piperazinium bromide (MANEPPB) was prepared by the quaternization reaction of N-methacryloyl-N'-ethyl piperazine (MANEP) with 1-bromopropane. Polyelectrolytes derived from the copolymers composed of MANEPPB/MMN/AA=60/35/5, 70/25/5, 80/15/5, 90/5/5 and 95/0/5 were prepared for the humidity-sensitive membranes, which were fabricated on the gold electrode by dipping method and were crosslinked by reacting copolymers with aziridine crosslinker, trimethylolpropane tris(2-methyl-1-aziridinopropionate) (TTAP). When the resistance dependences on the relative humidity of the sensors were measured, it was found that the resistance varied three orders of magnitude between 20 and 90%RH, which was satisfied with the requirement for the common humidity sensor operating at ambient humidity. Their hysteresis, temperature dependence, frequency dependence, response and recovery time and water durability were measured and evaluated as a humidity-sensing membrane.

Evaluation of Thermally Oxidized Soybean Oil Using Carbon Nanotube Sensor (탄소나노튜브를 이용한 대두유의 가열산화 특성평가)

  • Lee, Eun-Ji;Lim, Seung-Yong;Fai, Vincent Lau Chun;Ju, Byeong-Kwon;Oh, Sang-Suk
    • Korean Journal of Food Science and Technology
    • /
    • v.44 no.4
    • /
    • pp.472-477
    • /
    • 2012
  • As people are being exposed to many types of fast food, rancid oil is a factor affecting public health. Monitoring of rancidity in frying oils needs to be done adequately. The chemical methods that are currently used require long periods of time and expertise. The development of a device that quickly and easily measures rancidity would be helpful to manage rancidity in frying oils adequately. Due to the fact that carbon nanotube (CNT) is sensitive to acid value, we used CNT as a sensing material for detecting oil rancidity. Polyethylenimine (PEI) was coated on CNT for stable measurements. Experiments were conducted at $100^{\circ}C$ after samples were cooled from $180^{\circ}C$. The results showed a strong correlation between acid values and resistances using CNT sensors. As the acid value of oils increased, the resistance of CNT sensors increased. Development of sensors using CNT may make it possible to determine the rancidity of frying oils in real-time and on site.

Development of SAW Gas Sensor for Monitoring SOx Gas (SOx 가스감지용 SAW 가스 센서 개발)

  • Lee, Chan-Woo;Roh, Yong-Rae;Chung, Jong-Shik;Baik, Sung-Gi
    • Journal of Sensor Science and Technology
    • /
    • v.5 no.3
    • /
    • pp.41-48
    • /
    • 1996
  • We developed SAW gas sensor for monitoring SOx gas with high sensitivity. It was fabricated as a microsensor for detecting SOx gas by depositing sensing material on SAW device. As a detecting layer material, CdS was selected. Deposition of CdS in the form of thin films was carried out by the ultrasonic spray pyrolysis method using ultrasonic spray nozzle. Thin films with the uniform and large surface area for sensors were deposited. The stable pyrolysis environment provided by uniform and fine droplets formed by spray nozzle made it possible to obtain thin films with excellent quality. The minimum grain size of the CdS thin films was about 50 nm when deposited at $300^{\circ}C$. SAW gas sensors showed reasonable sensitivity and reproducibility. Further studies are required to investigate the interference of other gases to SOx gas detection.

  • PDF

Synthesis of functional ZnO nanoparticles and their photocatalytic properties

  • Nam, Sang-Hun;Kim, Myoung-Hwa;Lee, Sang-Duck;Kim, Min-Hee;Boo, Jin-Hyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.54-54
    • /
    • 2010
  • Zinc oxide is metal oxide semiconductor with the 3.37 eV bandgap energy. Zinc oxide is very attractive materials for many application fields. Zinc Oxide has many advantages such as high conductivity and good transmittance in visible region. Also it is cheaper than other semiconductor materials such as indium tin oxide (ITO). Therefore, ZnO is alternative material for ITO. ZnO is attracting attention for its application to transparent conductive oxide (TCO) films, surface acoustic wave (SAW), films bulk acoustic resonator (FBAR), piezoelectric materials, gas-sensing, solar cells and photocatalyst. In this study, we synthesized ZnO nanoparticles and defined their physical and chemical properties. Also we studied about the application of ZnO nanoparticles as a photocatalyst and try to find a enhancement photocatalytic activity of ZnO nanorticles.. We synthesized ZnO nanoparticles using spray-pyrolysis method and defined the physical and optical properties of ZnO nanoparticles in experiment I. When the ZnO are exposed to UV light, reduction and oxidation(REDOX) reaction will occur on the ZnO surface and generate ${O_2}^-$ and OH radicals. These powerful oxidizing agents are proven to be effective in decomposition of the harmful organic materials and convert them into $CO_2$ and $H_2O$. Therefore, we investigated that the photocatalytic activity was increased through the surface modification of synthesized ZnO nanoparticles. In experiment II, we studied on the stability of ZnO nanoparticles in water. It is well known that ZnO is unstable in water in comparison with $TiO_2$. $Zn(OH)_2$ was formed at the ZnO surface and ZnO become inactive as a photocatalyst when ZnO is present in the solution. Therefore, we prepared synthesized ZnO nanoparticles that were immersed in the water and dried in the oven. After that, we measured photocatalytic activities of prepared samples and find the cause of their photocatalytic activity changes.

  • PDF

Application and Development Trend of OTDRs (분포형 광섬유센서의 응용 및 개발 동향)

  • Chae, Kwagn-Seok;Lee, Sang-Pil;Lee, Chang-Ho;Han, Sung-Jae
    • Tunnel and Underground Space
    • /
    • v.21 no.1
    • /
    • pp.1-10
    • /
    • 2011
  • In these days, the development of optical fiber sensor technology is so remarkable that it can measure various physical and chemical quantities ranging from a few millimeters to over several kilometers. In addition, it is attempted to assess the structural integrity of the state of the advanced technologies and existing structures such as ships, aircrafts, and bridges. This paper introduced the case histories of the measuring technology of optical fiber applied on structures such as roads and tunnels. The case history using OTDR (Optical Time Domain Reflectometery) was also introduced in this paper. Measurement of the pre-convergence of a tunnel is essential to assess the safety of a tunnel and understand the geological conditions ahead of an advancing tunnel. Therefore, the pre-convergence measuring technology using OTDR is expected to substitute conventional measuring techniques.

A Review of Clouds and Aerosols (구름과 에어로졸 고찰)

  • Yum, Seong Soo;Kim, Byung Gon;Kim, Sang Woo;Chang, Lim Seok;Kim, Seong Bum
    • Journal of Climate Change Research
    • /
    • v.2 no.4
    • /
    • pp.253-267
    • /
    • 2011
  • This study summarizes some important results from the studies on clouds and aerosols, and their effects on climate in the northeast Asia that were made mainly by Korean scientists and some other scientists from around the world. Clouds and aerosols are recognized as one of the most important factors that contributes to uncertainties in climate predictions and therefore become the subject of active research in the western developed countries in recent years. However, the researches on clouds and aerosols are very weakly done in Korea except ground based measurements of aerosol physical, chemical and optical properties. These measurements indicate that aerosol loadings in the northeast Asia are generally much higher than other parts of the world. On the other hand, researches on clouds are few in Korea. Satellite and ground remote sensing, numerical modeling and aircraft in-situ measurements of clouds are highly needed for better assessment of the role of clouds on climate in the northeast Asia.

Past and Future Epidemiological Perspectives and Integrated Management of Rice Bakanae in Korea

  • Soobin, Shin;Hyunjoo, Ryu;Yoon-Ju, Yoon;Jin-Yong, Jung;Gudam, Kwon;Nahyun, Lee;Na Hee, Kim;Rowoon, Lee;Jiseon, Oh;Minju, Baek;Yoon Soo, Choi;Jungho, Lee;Kwang-Hyung, Kim
    • The Plant Pathology Journal
    • /
    • v.39 no.1
    • /
    • pp.1-20
    • /
    • 2023
  • In the past, rice bakanae was considered an endemic disease that did not cause significant losses in Korea; however, the disease has recently become a serious threat due to climate change, changes in farming practices, and the emergence of fungicide-resistant strains. Since the bakanae outbreak in 2006, its incidence has gradually decreased due to the application of effective control measures such as hot water immersion methods and seed disinfectants. However, in 2013, a marked increase in bakanae incidence was observed, causing problems for rice farmers. Therefore, in this review, we present the potential risks from climate change based on an epidemiological understanding of the pathogen, host plant, and environment, which are the key elements influencing the incidence of bakanae. In addition, disease management options to reduce the disease pressure of bakanae below the economic threshold level are investigated, with a specific focus on resistant varieties, as well as chemical, biological, cultural, and physical control methods. Lastly, as more effective countermeasures to bakanae, we propose an integrated disease management option that combines different control methods, including advanced imaging technologies such as remote sensing. In this review, we revisit and examine bakanae, a traditional seed-borne fungal disease that has not gained considerable attention in the agricultural history of Korea. Based on the understanding of the present significance and anticipated risks of the disease, the findings of this study are expected to provide useful information for the establishment of an effective response strategy to bakanae in the era of climate change.

Enhanced Electric Conductivity of Cement Composites by Functionalizing Graphene Oxide (산화그래핀 기능화에 의한 시멘트 복합체의 전기전도 특성 개선)

  • Jung-Geun Han;Jae-Hyeon Jeon;Young-Ho Kim;Jin Kim;Jong-Young Lee
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.1
    • /
    • pp.1-7
    • /
    • 2023
  • This study has utilized self-assembled monolayers technology to improve electrical property of graphene-oxide, which has been seperated graphine powder through a chemical exfoliation. Aluminum sulfate (Al2(SO4)3) was applied on graphene-oxide as a reactant, and the fundamental research was carried out to apply on the self-sensing of cement-based construction structures. Electric resistance measurement result has shown that cement-composites with GO and Al-GO can be used as a conductor, electric resistance of GO and Al-GO contained composites improved by 10.2% and 15.9% respectively when compared to the standard cement-composite. Microstructure analyzation shown the formation of Al(OH)3 gel when Al-GO was added, which is speculated to result the smooth flow of current by improving the density of cement-composite. This implies that graphene-oxide has a possibility to be utilized as smart building materials and construction structure itself rather than just a structure.