• Title/Summary/Keyword: Chemical sensing

Search Result 512, Processing Time 0.025 seconds

Short Review on Quartz Crystal Microbalance Sensors for Physical, Chemical, and Biological Applications

  • Il Ryu, Jang;Hoe Joon, Kim
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.389-396
    • /
    • 2022
  • Quartz crystal microbalance (QCM) based sensors are used for various applications owing to advantages such as excellent accuracy and precision, rapid response, and tiny footprint. Traditional applications of QCM-based sensors include biological sensing and thin-film thickness monitoring. Recently, QCMs have been used as functional material for novel physical and chemical detections, and with improved device design. QCM-based sensors are garnering considerable attention in particulate matter sensing and electric nose application. This review covers the challenges and solutions in physical, chemical, and biological sensing applications. First, various physical sensing applications are introduced. Secondly, the toxic gas and chemical detection studies are outlined, focusing on introducing a coating method for uniform sensing film and sensing materials for a minimal damping effect. Lastly, the biological and medical sensing applications, which use the monomolecularly decorating method for biomolecule recognition and a brief description of the overall measuring system, are also discussed.

Fabrication of CuO/ZnO Nano-heterostructure by Photochemical Method and Their H2S Gas Sensing Properties

  • Kim, Jae-Hyun;Yong, Ki-Jung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.359-359
    • /
    • 2011
  • This study reports the H2S gas sensing properties of CuO / ZnO nano-hetero structure bundle and the investigation of gas sensing mechanism. The 1-Dimensional ZnO nano-structure was synthesized by hydrothermal method and CuO / ZnO nano-heterostructures were prepared by photo chemical reaction. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) spectra confirmed a well-crystalline ZnO of hexagonal structure. In order to improve the H2S gas sensing properties, simple type of gas sensor was fabricated with ZnO nano-heterostructures, which were prepared by photo-chemical deposition of CuO on the ZnO nanorods bundle. The furnace type gas sensing system was used to characterize sensing properties with diluted H2S gas (50 ppm) balanced air at various operating temperature up to 500$^{\circ}C$. The H2S gas response of ZnO nanorods bundle sensor increased with increasing temperature, which is thought to be due to chemical reaction of nanorods with gas molecules. Through analysis of X-ray photoelectron spectroscopy (XPS), the sensing mechanism of ZnO nanorods bundle sensor was explained by well-known surface reaction between ZnO surface atoms and hydrogen sulfide. However at high sensing temperature, chemical conversion of ZnO nanorods becomes a dominant sensing mechanism in current system. Photo-chemically fabricated CuO/ZnO heteronanostructures show higher gas response and higher current level than ZnO nanorods bundle. The gas sensing mechanism of the heteronanostructure can be explained by the chemical conversion of sensing material through the reaction with H2S gas.

  • PDF

Hydrogen sulfide gas sensing mechanism study of ZnO nanostructure and improvement of sensing property by surface modification

  • Kim, Jae-Hyeon;Yong, Gi-Jung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.450-450
    • /
    • 2011
  • This study reports the hydrogen sulfide gas sensing properties of ZnO nanorods bundle and the investigation of gas sensing mechanism. Also the improvement of sensing properties was also studied through the application of ZnO heterstructured nanorods. The 1-Dimensional ZnO nano-structure was synthesized by hydrothermal method and ZnO nano-heterostructures were prepared by sonochemical reaction. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) spectra confirmed a well-crystalline ZnO of hexagonal structure. The gas response of ZnO nanorods bundle sensor increased with increasing temperature, which is thought to be due to chemical reaction of nanorods with gas molecules. Through analysis of X-ray photoelectron spectroscopy (XPS), the sensing mechanism of ZnO nanorods bundle sensor was explained by well-known surface reaction between ZnO surface atoms and hydrogen sulfide. However at high sensing temperature, chemical conversion of ZnO nanorods becomes a dominant sensing mechanism in current system. In order to improve the gas sensing properties, simple type of gas sensor was fabricated with ZnO nano-heterostructures, which were prepared by deposition of CuO, Au on the ZnO nanorods bundle. These heteronanostructures show higher gas response and higher current level than ZnO nanorods bundle. The gas sensing mechanism of the heteronanostructure can be explained by the chemical conversion of sensing material through the reaction with target gas.

  • PDF

Molecular Modeling, Synthesis, and Screening of New Bacterial Quorum-sensing Antagonists

  • Kim, Cheol-Jin;Kim, Jae-Eun;Park, Hyung-Yeon;Mclean, Robert J.C.;Kim, Chan-Kyung;Jeon, Jong-Ho;Yi, Song-Se;Kim, Young-Gyu;Lee, Yoon-Sik;Yoon, Je-Yong
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.10
    • /
    • pp.1598-1606
    • /
    • 2007
  • A new series comprising 7 analogs of N-(sulfanyl ethanoyl)-L-HSL derivatives, 2 analogs of N-(fluoroalkanoyl)-$_L$-HSL derivatives, N-(fluorosulfonyl)-L-HSL, and 2,2-dimethyl butanoyl HSL were synthesized using a solid-phase organic synthesis method. Each of the 11 synthesized compounds was analyzed using NMR and mass spectroscopies, and molecular modeling studies of the 11 ligands were performed using SYBYL packages. Thereafter, a bacterial test was designed to identify their quorum-sensing inhibition activity and antifouling efficacy. Most of the synthesized compounds were found to be effective as quorum-sensing antagonists, where antagonist screening revealed that 10 among the 11 synthesized ligands were able to antagonize the quorum sensing of A. tumefaciens.

A Possible Merge of FRET and SPR Sensing System for Highly Accurate and Selective Immunosensing

  • Lee, Jae-Beom;Chen, Hongxia;Lee, Jae-Wook;Sun, Fangfang;Kim, Cheol-Min;Chang, Chul-Hun L.;Koh, Kwang-Nak
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.12
    • /
    • pp.2905-2908
    • /
    • 2009
  • Immuno-sensing for high accurate and selective sensing was performed by fluorescence spectroscopy and surface plasmon resonance (SPR), respectively. Engineered assembly of two fluorescent quantum dots (QDs) with bovine serum albumin (BSA) and anti-BSA was fabricated in PBS buffer for fluorescence analysis of fluorescence resonance energy transfer (FRET). Furthermore, the same bio-moieties were immobilized on Au plates for SPR analysis. Naturally-driven binding affinity of immuno-moieties induced FRET and plasmon resonance angle shift in the nanoscale sensing system. Interestingly, the sensing ranges were uniquely different in two systems: e.g., SPR spectroscopy was suitable for highly accurate analysis to measure in the range of 10$^{-15{\sim}-10$ng/mL while the QD fluorescent sensing system was relatively lower sensing ranges in 10$^{-10{\sim}-6$ng/mL. However, the QD sensing system was larger than the SPR sensing system in terms of sensing capacity per one specimen. It is, therefore, suggested that a mutual assistance of FRET and SPR combined sensing system would be a potentially promising candidate for high accuracy and reliable in situ sensing system of immune-related diseases.

Improvement in ammonia gas sensing behavior by polypyrrole/multi-walled carbon nanotubes composites

  • Jang, Woo-Kyung;Yun, Ju-Mi;Kim, Hyung-Il;Lee, Young-Seak
    • Carbon letters
    • /
    • v.13 no.2
    • /
    • pp.88-93
    • /
    • 2012
  • Polypyrrole (PPy)/multi-walled carbon nanotubes (MWCNTs) composites were prepared by in situ polymerization of pyrrole on the surface of MWCNTs templates to improve the ammonia gas sensing properties. PPy morphologies, formed on the surface of MWCNTs, were investigated by field emission scanning electron microscopy. The thermal stabilities of the PPy/MWCNTs composites were improved as the content of MWCNTs increased due to the higher thermal stability of the MWCNTs. PPy/MWCNTs composites showed synergistic effects in improving the ammonia gas sensing properties, attributed to the combination of efficient electron transfer between PPy/MWCNTs composites and ammonia gas, and the reproducible electrical resistance variation on PPy during the gas sensing process.

A Fiber Optic Sensor for Determination of 2,4-Dichlorophenol Based on Oxygen Oxidation Catalyzed by Iron(III) Tetrasulfophthalocyanine

  • Tong, Yilin;Li, Dapeng;Huang, Jun;Zhang, Cong;Li, Kun;Ding, Liyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.11
    • /
    • pp.3307-3311
    • /
    • 2013
  • A new fiber optical sensor was developed for the determination of 2,4-dichlorophenol (DCP). The sensor was based on DCP oxidation by oxygen with the catalysis of iron(III) tetrasulfophthalocyanine (Fe(III)PcTs). The optical oxygen sensing film with $Ru(bpy)_3Cl_2$ as the fluorescence indicator was used to determine the consumption of oxygen in solution. A lock-in amplifier was used for detecting the lifetime of the oxygen sensing film by measuring the phase delay change of the sensor head. The different variables affecting the sensor performance were evaluated and optimized. Under the optimal conditions (i.e. pH 6.0, $25^{\circ}C$, Fe(III)PcTs concentration of 0.62 mg/mL), the linear detection range and response time of the sensor are $1.0{\times}10^{-6}-9.0{\times}10^{-6}$ mol/L and 250 s, respectively. The sensor displays high selectivity, good repeatability and stability, and can be used as an effective tool in analyzing DCP concentration in practical samples.

Thickness Dependence of Solution Deposited HfOx Sensing Membrane for Electrolyte-Insulator-Semiconductor (EIS) Structures (용액 공정으로 증착된 HfOx 감지막을 갖는 Electrolyte-Insulator-Semiconductor 소자의 두께 의존성)

  • Lee, In-Kyu;Cho, Won-Ju
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.233-237
    • /
    • 2013
  • We fabricated electrolyte-insulator-semiconductor (EIS) devices using a solution process and measured the sensing properties of EIS devices according to the thicknesses of sensing membrane. For high pH sensitivity and better stability properties, we used $SiO_2/HfO_x$ (OH) layer as a sensing membrane. In this work, $HfO_x$ sensing membranes were deposited on 5 nm thick $SiO_2$ buffer layer by spin coater with thicknesses of 15, 31, 42, 55 nm, respectively. As a result, we founded that the thickness of $HfO_x$ sensing membrane affects to sensitivity and chemical stability of EIS device. Especially, the EIS device with 42 nm thick $HfO_x$ membrane showed superior sensing ability in terms of pH-sensitivity, linearity, hysteresis voltage and drift rate characteristics than the other devices. In conclusion, we confirmed that it is possible to improve the sensing ability and the chemical stability properties using optimized thickness of sensing membrane and proper annealing process.