• Title/Summary/Keyword: Chemical reaction optimization

Search Result 142, Processing Time 0.032 seconds

MCRO-ECP: Mutation Chemical Reaction Optimization based Energy Efficient Clustering Protocol for Wireless Sensor Networks

  • Daniel, Ravuri;Rao, Kuda Nageswara
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.7
    • /
    • pp.3494-3510
    • /
    • 2019
  • Wireless sensor networks encounter energy saving as a major issue as the sensor nodes having no rechargeable batteries and also the resources are limited. Clustering of sensors play a pivotal role in energy saving of the deployed sensor nodes. However, in the cluster based wireless sensor network, the cluster heads tend to consume more energy for additional functions such as reception of data, aggregation and transmission of the received data to the base station. So, careful selection of cluster head and formation of cluster plays vital role in energy conservation and enhancement of lifetime of the wireless sensor networks. This study proposes a new mutation chemical reaction optimization (MCRO) which is an algorithm based energy efficient clustering protocol termed as MCRO-ECP, for wireless sensor networks. The proposed protocol is extensively developed with effective methods such as potential energy function and molecular structure encoding for cluster head selection and cluster formation. While developing potential functions for energy conservation, the following parameters are taken into account: neighbor node distance, base station distance, ratio of energy, intra-cluster distance, and CH node degree to make the MCRO-ECP protocol to be potential energy conserver. The proposed protocol is studied extensively and tested elaborately on NS2.35 Simulator under various senarios like varying the number of sensor nodes and CHs. A comparative study between the simulation results derived from the proposed MCRO-ECP protocol and the results of the already existing protocol, shows that MCRO-ECP protocol produces significantly better results in energy conservation, increase network life time, packets received by the BS and the convergence rate.

Optimization of acid hydrolysis conditions of Hovenia dulcis extract for increasing bioactive compound

  • Kang, Sung-Hee;Kim, Sung-Mun;Kim, Jin-Hyun
    • 한국생물공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.360-363
    • /
    • 2005
  • This study was a method that used a hydrolysis for increasing the efficacy of alcohol decrease from Hovenia dulcis extract. The best pH was 2.0 to obtain a maximum activity at fixed reaction temperature and time. At pH 2.0, reaction temperature $80^{\circ}C$ and reaction time 4 hr gave the highest activity which was 124.2% of control. This is very simple and efficient method to increase the efficacy of alcohol decrease from Hovenia dulcis extract. The mechanism that increases the efficiency of alcohol decrease be examined through hydrolysis.

  • PDF

Optimization of Reaction Conditions for High Yield Synthesis of Carbon Nanotube Bundles by Low-Temperature Solvothermal Process and Study of their H2 Storage Capacity

  • Krishnamurthy, G.;Agarwal, Sarika
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.10
    • /
    • pp.3046-3054
    • /
    • 2013
  • Synthesis of Carbon Nanotube bundles has been achieved by simple and economical solvothermal procedure at very low temperature of $180^{\circ}C$. The product yield obtained was about 70-75%. The optimization of reaction conditions for an efficient synthesis of CNTs has been presented. The CNTs are obtained by reduction of hexachlorobenzene in the presence of Na/Ni in cyclohexane. The X-ray diffraction, Fourier transform infrared and Raman spectral studies have inferred us the graphene structure of the products. The CNTs formed as the bundles were viewed on scanning electron microscope, transmission electron microscope and high-resolution transmission electron microscope. These are the multiwalled CNTs with outer diameter of 5-10 nm, the inner diameter 2-4 nm and cross sectional diameter up to 5 nm. Brunauer-Emmett-Teller (BET) based $N_2$ gas adsorption studies have been made to obtain BET surface area and $H_2$ storage capacity. Effect of the experimental variables such as reaction temperature, amount of catalyst and the amount of carbon source were investigated. It is found that they affect significantly on the product nature and yield.

Theoretical Study on the Reaction Mechanism of Azacyclopropenylidene with Epoxypropane: An Insertion Process

  • Tan, Xiaojun;Wang, Weihua;Li, Ping
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.9
    • /
    • pp.2717-2722
    • /
    • 2014
  • The reaction mechanism between azacyclopropenylidene and epoxypropane has been systematically investigated employing the second-order M${\o}$ller-Plesset perturbation theory (MP2) method to better understand the reactivity of azacyclopropenylidene with four-membered ring compound epoxypropane. Geometry optimization, vibrational analysis, and energy property for the involved stationary points on the potential energy surface have been calculated. It was found that for the first step of this reaction, azacyclopropenylidene can insert into epoxypropane at its C-O or C-C bond to form spiro intermediate IM. It is easier for the azacyclopropenylidene to insert into the C-O bond than the C-C bond. Through the ring-opened step at the C-C bond of azacyclopropenylidene fragment, IM can transfer to product P1, which is named as pathway (1). On the other hand, through the H-transferred step and subsequent ring-opened step at the C-N bond of azacyclopropenylidene fragment, IM can convert to product P2, which is named as pathway (2). From the thermodynamics viewpoint, the P2 characterized by an allene is the dominating product. From the kinetic viewpoint, the pathway (1) of formation to P1 is primary.

Response Surface Methodological Approach for Optimization of Removal of Free Fatty Acid in Crude Oil

  • Jeong, Gwi-Taek;Lee, Kyoung-Min;Yang, Hee-Seung;Park, Seok-Hwan;Kim, Jae-Hoon;Kim, Do-Man;Park, Don-Hee
    • 한국생물공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.904-909
    • /
    • 2005
  • To optimize the removal of free fatty acid in crude vegetable oil, response surface methodology was applied to determine the effects of five level-four factors and their reciprocal interactions on removal of free fatty acid. A total of 30 individual experiments were performed, which were designed to study reaction temperature, reaction time, catalyst amount and methanol amount. A statistical model predicted that the highest removal yield of free fatty acid was 99.8%, at the following optimized reaction conditions: a reaction temperature of 64.99$^{\circ}C$, a reaction time of 36.20 mins., an catalyst amount of 13.01% (w/v), and a methanol amount of 15% (v/v). Using these optimal factor values under experimental conditions in three independent replicates, the average removal yield was well within the value predicted by the model.

  • PDF

Optimization of Reduction of 3-chloro-4-fluoropropiophenone by Whole Cells of Saccharomyces cerevisiae (Saccharomyces cerevisiae를 이용한 3-chloro-4-fluoropropiophenone 환원 반응 최적화)

  • Lee, Hae-Ryong;Jeong, Min;Yoo, Ik-Keun;Hong, Soon-Ho
    • KSBB Journal
    • /
    • v.26 no.6
    • /
    • pp.569-571
    • /
    • 2011
  • Reduction of 3-chloro-4-fluoropropiophenone by Saccharomyces cerevisiae as a whole cell biocatalyst was optimized. Effects of glucose, S. cerevisiae and 3-chloro-4-fluoropropiophenone concentrations on conversion of reduction reaction was investigated. Optimum concentrations of glucose, S. cerevisiae and 3-chloro-4-fluoropropiophenone were 100, 40 and 20 g/L, respectively. At optimum condition, 100% of conversion was achieved in 12 hours of reaction.

Modeling and Optimization of High Strength Wastewater Treatment Using the Electro Oxidation Process (전기산화공법을 이용한 고농도폐수 처리공정의 모델링 및 최적화)

  • Lee, Hongmin;Lee, Sangsun;Hwang, Sungwon;Jin, Dongbok
    • Korean Chemical Engineering Research
    • /
    • v.54 no.3
    • /
    • pp.340-349
    • /
    • 2016
  • Electro oxidation system was designed in this study for the reduction of COD (Chemical Oxygen Demand) from high-strength wastewater, produced during refinery turnaround period. First, BDD (Boron Doped Diamond) electrode was synthesized and electro oxidation system of actual industrial wastewater was developed by adopting the synthesized BDD electrode. The experiments were carried out under various operating conditions under certain range of current density, pH, electrolyte concentration and reaction time. Secondly, reaction kinetics were identified based on the experimental results, and the kinetics were embedded into a genetic mathematical model of the electro oxidation system. Lastly, design and operating parameters of the process were optimized to maximize the efficiency of the pretreatment system. The coefficient of determination ($R^2$) of the model was found to be 0.982, and it proved high accuracy of the model compared with experimental results.

Optimization and Evaluation of Organic Acid Recovery from Kraft Black Liquor Using Liquid-Liquid Extraction

  • Kwon, Hee Sun;Um, Byung Hwan
    • Korean Chemical Engineering Research
    • /
    • v.54 no.6
    • /
    • pp.753-761
    • /
    • 2016
  • Liquid-liquid extraction (LLE) can be used for the recovery of acetic acid from black liquor prior to bioethanol fermentation. Recovery of value-added chemicals such as acetic-, formic- and lactic acid using LLE from Kraft black liquor was studied. Acetic acid and formic acid have been reported to be strong inhibitors in fermentation. The study elucidates the effect of three reaction parameters: pH (0.5~3.5), temperature ($25{\sim}65^{\circ}C$), and reaction time (24~48 min). Extraction performance using tri-n-octylphosphine oxide as the extractant was evaluated. The maximum acetic acid concentration achieved from hydrolyzates was 69.87% at $25^{\circ}C$, pH= 0.5, and 36 min. Factorial design was used to study the effects of pH, temperature, and reaction time on the maximum inhibitor extraction yield after LLE. The maximum potential extraction yield of acetic acid was 70.4% at $25.8^{\circ}C$, pH=0.6 and 37.2 min residence time.

Optimization fluidization characteristics conditions of nickel oxide for hydrogen reduction by fluidized bed reactor

  • Lee, Jae-Rang;Hasolli, Naim;Jeon, Seong-Min;Lee, Kang-San;Kim, Kwang-Deuk;Kim, Yong-Ha;Lee, Kwan-Young;Park, Young-Ok
    • Korean Journal of Chemical Engineering
    • /
    • v.35 no.11
    • /
    • pp.2321-2326
    • /
    • 2018
  • We evaluated the optimal conditions for fluidization of nickel oxide (NiO) and its reduction into high-purity Ni during hydrogen reduction in a laboratory-scale fluidized bed reactor. A comparative study was performed through structural shape analysis using scanning electron microscopy (SEM); variance in pressure drop, minimum fluidization velocity, terminal velocity, reduction rate, and mass loss were assessed at temperatures ranging from 400 to $600^{\circ}C$ and at 20, 40, and 60 min in reaction time. We estimated the sample weight with most active fluidization to be 200 g based on the bed diameter of the fluidized bed reactor and height of the stocked material. The optimal conditions for NiO hydrogen reduction were found to be height of sample H to the internal fluidized bed reactor diameter D was H/D=1, reaction temperature of $550^{\circ}C$, reaction time of 60 min, superficial gas velocity of 0.011 m/s, and pressure drop of 77 Pa during fluidization. We determined the best operating conditions for the NiO hydrogen reduction process based on these findings.

An ab initio Study on the Molecular Elimination Reactions of Methacrylonitrile

  • Oh, Chang-Young;Park, Tae-Jun;Kim, Hong-Lae
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.8
    • /
    • pp.1177-1184
    • /
    • 2005
  • Ab initio quantum chemical molecular orbital calculations have been performed for the unimolecular decomposition of methacrylonitrile ($CH_3C(CN)=CH_2$), especially for HCN and $H_2$ molecular elimination channels. Structures and energies of the reactants, products, and relevant species along the individual reaction pathways were determined by MP2 gradient optimization and MP4 single point energy calculations. Direct four-center elimination of HCN and three-center elimination of H2 channels were identified. In addition, H or CN migration followed by HCN or H2 elimination channels via the methylcyanoethylidene intermediate was also identified. Unlike the case of crotonitrile previously studied, in which the dominant decomposition process was the direct three-center elimination of HCN, the most important reaction pathway should be the direct threecenter elimination of $H_2$ in the case of methacrylonitrile.