• Title/Summary/Keyword: Chemical reaction optimization

Search Result 142, Processing Time 0.029 seconds

Nanocarbon synthesis using plant oil and differential responses to various parameters optimized using the Taguchi method

  • Tripathi, Suman;Sharon, Maheshwar;Maldar, N.N.;Shukla, Jayashri;Sharon, Madhuri
    • Carbon letters
    • /
    • v.14 no.4
    • /
    • pp.210-217
    • /
    • 2013
  • The synthesis of carbon nanomaterials (CNMs) by a chemical vapor deposition method using three different plant oils as precursors is presented. Because there are four parameters involved in the synthesis of CNM (i.e., the precursor, reaction temperature of the furnace, catalysts, and the carrier gas), each having three variables, it was decided to use the Taguchi optimization method with the 'the larger the better' concept. The best parameter regarding the yield of carbon varied for each type of precursor oil. It was a temperature of $900^{\circ}C$ + Ni as a catalyst for neem oil; $700^{\circ}C$ + Co for karanja oil and $500^{\circ}C$ + Zn as a catalyst for castor oil. The morphology of the nanocarbon produced was also impacted by different parameters. Neem oil and castor oil produced carbon nanotube (CNT) at $900^{\circ}C$; at lower temperatures, sphere-like structures developed. In contrast, karanja oil produced CNTs at all the assessed temperatures. X-ray diffraction and Raman diffraction analyses confirmed that the nanocarbon (both carbon nano beads and CNTs) produced were graphitic in nature.

Synthesis of γ-Fe2O3 Nanoparticles by Low-pressure Ultrasonic Spraying (저압 초음파 분무 공정을 이용한 γ-Fe2O3 나노입자의 합성)

  • Lee, Chang-Woo;Kim, Soon-Gil;Choa, Yong-Ho;Lee, Jai-Sung
    • Journal of Powder Materials
    • /
    • v.14 no.1 s.60
    • /
    • pp.19-25
    • /
    • 2007
  • This study was focused on the optimization of low-pressure ultrasonic spraying process for synthesis of pure ${\gamma}-Fe_2O_3$ nanoparticles. As process variables, pressure in the reactor, precursor concentration, and reaction temperature were changed in order to control the chemical and microstructural properties of iron oxide nanoparticles including crystal phase, mean particle size and particle size distribution. X-ray diffraction (XRD) and transmission electron microscopy (TEM) studies revealed that pure ${\gamma}-Fe_2O_3$ nanoparticles with narrow particle size distribution of 5-15 nm were successfully synthesized from iron pentacarbonyl ($Fe(CO)_{5}$) in hexane under 30 mbar with precursor concentrations of 0.1M and 0.2M, at temperatures over $800^{\circ}C$. Also magnetic properties, coercivity ($H_c$) and saturation magnetization ($M_s$) were reported in terms of the microstructure of particles based on the results from vibration sampling magnetometer (VSM).

A Liquid-Based Colorimetric Assay of Lysine Decarboxylase and Its Application to Enzymatic Assay

  • Kim, Yong Hyun;Sathiyanarayanan, Ganesan;Kim, Hyun Joong;Bhatia, Shashi Kant;Seo, Hyung-Min;Kim, Jung-Ho;Song, Hun-Seok;Kim, Yun-Gon;Park, Kyungmoon;Yang, Yung-Hun
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.12
    • /
    • pp.2110-2115
    • /
    • 2015
  • A liquid-based colorimetric assay using a pH indicator was introduced for high-throughput monitoring of lysine decarboxylase activity. The assay is based on the color change of bromocresol purple, measured at 595 nm in liquid reaction mixture, due to an increase of pH by the production of cadaverine. Bromocresol purple was selected as the indicator because it has higher sensitivity than bromothymol blue and pheonol red within a broad range and shows good linearity within the applied pH. We applied this for simple determination of lysine decarboxylase reusability using 96-well plates, and optimization of conditions for enzyme overexpression with different concentrations of IPTG on lysine decarboxylase. This assay is expected to be applied for monitoring and quantifying the liquid-based enzyme reaction in biotransformation of decarboxylase in a high-throughput way.

R & D Trends on Direct Formic Acid Fuel Cells (직접 개미산 연료전지의 연구동향)

  • Kwon, Yongchai;Han, Jonghee;Kim, Jinsoo
    • Applied Chemistry for Engineering
    • /
    • v.19 no.6
    • /
    • pp.583-591
    • /
    • 2008
  • Recently, as a demand for the portable device is surged, there are needs to develop a new fuel cell system for replacing the conventionally used secondary battery. For this purpose, it becomes important to develop direct formic acid fuel cell (DFAFC) that uses formic acid as a fuel. The formic acid can offer typical advantages such as excellent non-toxicity of the level to be used as food additive, smaller crossover flux through electrolyte, and high reaction capability caused by high theoretical electromotive force (EMF). With the typical merits of formic acid, the efforts for optimizing reaction catalyst and cell design are being made to enhance performance and long term stability of DFAFC. As a result, to date, the DFAFC having the power density of more than $300mW/cm^2$ was developed. In this paper, basic performing theory and configuration of DFAFC are initially introduced and future opportunities of DFAFC including the development of catalyst for the anode electrode and electrolyte, and design for the optimization of cell structure are discussed.

Synthesis of Ethyl levulinate from Chitosan Using Homogeneous Acid Catalyst (Chitosan으로부터 균일 산 촉매를 이용한 Ethyl Levulinate의 합성)

  • Jeong, Gwi-Taek;Kim, Sung-Koo
    • Korean Chemical Engineering Research
    • /
    • v.58 no.2
    • /
    • pp.266-272
    • /
    • 2020
  • In this study, the production of ethyl levulinate from chitosan using successive acid-catalyzed hydrolysis and esterification was investigated. To optimize and analysis the reaction factors and heir reciprocal interaction, response surface methodology was introduced. In the effect of water content in ethanol solvent, the production yield of ethyl levulinate was high at 5% water content (or 95% ethanol). As a result of optimization of reaction factors, 30.1% ethyl levulinate yield was obtained under the condition of 200 ℃, 3.19% chitosan, 0.49M sulfuric acid, 5% water content, and 58 min. Finally, the formation yield of ethyl levulinate was tended to enhance by increase of combined severity factor. This result indicated that the potential of chitosan as feedstock for production of chemicals and fuels.

Mathematical Modeling of Scheduling Problems for the Fusion Fuel Cycle (핵융합 공정주기에서의 생산 계획 최적화)

  • Lee, Suh-Young;Ha, Jin-Kuk;Lee, In-Beum;Lee, Euy Soo
    • Korean Chemical Engineering Research
    • /
    • v.58 no.4
    • /
    • pp.596-603
    • /
    • 2020
  • In this study, a mathematical model for optimal operation of the fusion fuel cycle is developed based on scheduling approach. The fusion fuel cycle consists of a system for storing and supplying deuterium and tritium, and receiving and separating process after the fusion reaction. Except that tritium is a radioactive material, most of these processes consist of catalytic reactions and separation process. For these reasons, it is possible to apply scheduling approach which is also widely utilized to chemical plants to derive the optimal operating scenarios. The developed model determined the optimal regeneration cycle to minimize the amount of tritium inside the vacuum pumps. Based on the characteristics of various device in the fusion reactor, the optimal tritium plant operation scenario is evaluated. The formulated model was applied to the actual tokamak scenario and utilized to analyze the fuel flow and balance of ITER fuel cycle.

Extraction of Natural Emulsifier from Medicago sativa L. and Sapindus saponaria L.: Optimization using CCD-RSM (알팔파 및 무환자나무열매로부터 천연유화제의 추출: CCD-RSM을 이용한 최적화)

  • Hong, Seheum;Lee, Seung Bum
    • Applied Chemistry for Engineering
    • /
    • v.33 no.3
    • /
    • pp.272-278
    • /
    • 2022
  • In this study, natural emulsifiers were extracted from Medicago sativa L. and Sapindus saponaria L. The extraction yield using CCD-RSM and the extraction process of foaming stability of the extracted product were optimized and 95% confidence interval was used to confirm the statistical reasonableness of the optimization. Herein, independent parameters were the ethanol volume and extraction temperature, whereas reaction parameters were the extraction yield and foaming stability. Under the condition of 53.5 vol% ethanol and extraction temperature (70.9 ℃), the maximum yield and foaming stability of the extracted product from Medicago sativa L were predicted as 26.2 wt% and 44.5%, respectively. In the case of the extraction from Sapindus saponaria L, the maximum yield and foaming stability were expected to be 31.9 wt% and 47.5% under the optimized conditions including 60.4 vol% of ethanol and extraction temperature (72.4 ℃). The average experimental error for validating the accuracy was about 3.4(± 0.3)% and 5.0(± 0.04)% for the extraction processes from Medicago sativa L. and Sapindus saponaria L., respectively.

Highly Efficient Biotransformation of Astragaloside IV to Cycloastragenol by Sugar-Stimulated β-Glucosidase and β-Xylosidase from Dictyoglomus thermophilum

  • Li, Qi;Wu, Tao;Zhao, Linguo;Pei, Jianjun;Wang, Zhenzhong;Xiao, Wei
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.12
    • /
    • pp.1882-1893
    • /
    • 2019
  • β-Glucosidases and β-xylosidases are two categories of enzymes that could cleave out non-reducing, terminal β-D-glucosyl and β-D-xylosyl residues with release of D-glucose and D-xylose, respectively. In this paper, two functional β-glucosidase Dth3 and β-xylosidase Xln-DT from Dictyoglomus thermophilum were heterologously expressed in E.coli BL21 (DE3). Dth3 and Xln-DT were relatively stable at 75℃ and were tolerant or even stimulated by glucose and xylose. Dth3 was highly tolerant to glucose with a Ki value of approximately 3 M. Meanwhile, it was not affected by xylose in high concentration. The activity of Xln-DT was stimulated 2.13-fold by 1 M glucose and 1.29-fold by 0.3 M xylose, respectively. Furthermore, the βglucosidase Dth3 and β-xylosidase Xln-DT showed excellent selectivity to cleave the outer C-6 and C-3 sugar moieties of ASI, which established an effective and green method to produce the more pharmacologically active CAG, an exclusive telomerase activator. We measured temperature, pH and dosage of enzyme using a single-factor experiment in ASI biotransformation. After optimization, the optimal reaction conditions were as follows: 75℃, pH 5.5, 1 U of Dth3 and 0.2 U of Xln-DT, respectively. Under the optimized conditions, 1 g/l ASI was transformed into 0.63 g/l CAG with a corresponding molar conversion of 94.5% within 3 h. This is the first report to use the purified thermostable and sugar-tolerant enzymes from Dictyoglomus thermophilum to hydrolyze ASI synergistically, which provides a specific, environment-friendly and cost-effective way to produce CAG.

Emulsification and Stability of Wheat Germ Oil in Water Emulsions: Optimization using CCD-RSM (밀배아유 원료 O/W 유화액의 제조 및 안정성평가: CCD-RSM을 이용한 최적화)

  • Hong, Seheum;Jang, Hyun Sik;Lee, Seung Bum
    • Applied Chemistry for Engineering
    • /
    • v.32 no.5
    • /
    • pp.562-568
    • /
    • 2021
  • An O/W (oil in water) emulsion, wheat germ oil raw material, was produced by using natural wheat germ oil and composite sugar-ester. The effects of variables such as the hydrophile-lipophile balance (HLB) value, added emulsifier amount, and emulsification time on the average particle size, emulsification viscosity and ESI of O/W wheat germ oil emulsion were investigated. The parameters of the emulsification process produced by the central composite design model of the response surface methodology (CCD-RSM), which is a reaction surface analysis method, were simulated and optimized. The optimum process conditions obtained from this paper for the production of O/W wheat germ oil emulsion were 8.4, 6.4 wt%, 25.4 min for the HLB value, amount of emulsifier, and emulsion time, respectively. The predicted reaction values by CCD-RSM model under the optimum conditions were 206 nm, 8125 cP, and 98.2% for mean droplet size (MDS), viscosity, and ESI, respectively, based on the emulsion after 7 days. The MDS, viscosity and ESI of the emulsion obtained from actual experiments were 209 nm, 7974 cP and 98.7%, respectively. Therefore, it was possible to design an optimization process for evaluating the stability of the emulsion of wheat germ oil raw material by CCD-RSM.

Chromaticity Analysis of Curcumin Extracted from Curcuma and Turmeric: Optimization Using Response Surface Methodology (강황과 울금으로부터 추출된 커큐민의 색도분석 : 반응표면분석법을 이용한 최적화)

  • Yoo, Bong-Ho;Jang, Hyun Sik;Lee, Seung Bum
    • Applied Chemistry for Engineering
    • /
    • v.30 no.4
    • /
    • pp.421-428
    • /
    • 2019
  • This paper describes a methode to extract yellow pigment from curcuma and turmeric containing natural color curcumin whose target color indexes of L, a, and b were 87.0 7.43, and 88.2, respectively. The pH range and extraction temperature used for the reaction surface analysis method were from pH 3 to pH 7 and between 40 and $70^{\circ}C$, respectively for both natural products. A central synthesis planning model combined with the method was used to obtain optimal extraction conditions to produce the color close to target. Results and regression equations show that the color space and difference of curcuma and turmeric have the greatest influence on the value. In the case of curcuma, the optimum conditions to satisfy all of the response theoretical values of color coordinates of L (74.67), a (5.69), and b (70.08) were at the pH and temperature of 3.43 and $54.8^{\circ}C$, respectively. The experimentally obtained L, a, and b, values under optimal conditions were 72.92, 5.32, and 72.17, respectively. For the case of turmeric, theoretical numerical color coordinates of L, a, and b, under the pH of 5.22 and temperature of $50.4^{\circ}C$ were 82.02, 7.43, and 72.86 respectively. Whereas, the experiment results were L (81.85), a (5.39), and b (71.58). Both cases showed an error range within 1%. Therefore, it is possible to obtain a low error rate when applying the central synthesis planning model to the reaction surface analysis method as an optimization process of the dye extraction of natural raw materials.